Journal of neurosurgery
-
Journal of neurosurgery · Jan 2018
NADH fluorescence imaging and the histological impact of cortical spreading depolarization during the acute phase of subarachnoid hemorrhage in rats.
OBJECTIVE Although cortical spreading depolarization (CSD) has been observed during the early phase of subarachnoid hemorrhage (SAH) in clinical settings, the pathogenicity of CSD is unclear. The aim of this study is to elucidate the effects of loss of membrane potential on neuronal damage during the acute phase of SAH. METHODS Twenty-four rats were subjected to SAH by the perforation method. ⋯ CONCLUSIONS CSD was successfully visualized using NADH fluorescence. It propagated from the anterior to the posterior cortex along with an increase in CBF. The duration of depolarization in CSD (2.3 ± 1.2 minutes) was far shorter than that causing 50% neuronal damage (22.4 minutes) and was not associated with histological damage in the current experimental setting.
-
Journal of neurosurgery · Jan 2018
Contralateral peripheral neurotization for a hemiplegic hindlimb after central neurological injury.
OBJECTIVE Contralateral peripheral neurotization surgery has been successfully applied to rescue motor function of the hemiplegic upper extremity in patients with central neurological injury (CNI). It may contribute to strengthened neural pathways between the contralesional cortex and paretic limbs. However, the effect of this surgery in the lower extremities remains unknown. ⋯ Histological study of the rat brains verified comparable injured volumes among Groups 1-3 at final examinations, and electromyography and toluidine blue staining indicated successful regeneration of the L6-L6 neural pathways in Group 1. CONCLUSIONS Contralateral L-6 neurotization could be a promising and safe surgical approach for improving motor recovery of the hemiplegic hindlimb after unilateral CNI in adult rats. Further investigations are needed before extrapolating the present conclusions to humans.
-
Journal of neurosurgery · Jan 2018
Effect of granulocyte colony-stimulating factor on the cochlear nuclei after creation of a partial nerve lesion: an experimental study in rats.
OBJECTIVE The risk of injury of the cochlear nerve during angle (CPA) surgery is high. Granulocyte colony-stimulating factor (G-CSF) has been found in various experimental models of peripheral and CNS injury to have a neuroprotective effect by inhibiting apoptosis and inflammation. However, to the authors' knowledge, the influence of G-CSF on cochlear nerve regeneration has not been reported. ⋯ CONCLUSIONS The use of G-CSF improved the function of the eighth cranial nerve and protected cochlear nucleus cells from destruction after a controlled partial injury of the nerve. These findings might be relevant for surgery that involves CPA tumors. The use of G-CSF in patients with a lesion in the CPA might improve postoperative outcomes.