Journal of neurosurgery
-
Journal of neurosurgery · Sep 2018
The interperiosteodural concept applied to the jugular foramen and its compartmentalization.
OBJECTIVE The dura mater is made of 2 layers: the endosteal layer (outer layer), which is firmly attached to the bone, and the meningeal layer (inner layer), which directly covers the brain and spinal cord. These 2 dural layers join together in most parts of the skull base and cranial convexity, and separate into the orbital and perisellar compartments or into the spinal epidural space to form the extradural neural axis compartment (EDNAC). The EDNAC contains fat and/or venous blood. ⋯ These 2 dural layers joined together at the level of the petrous and occipital bones and separated at the inferior petrosal sinus and the sigmoid sinus, and around the lower cranial nerves, to form the EDNAC. Study of the dural sheaths allowed the authors to describe an original compartmentalization of the jugular foramen in 3 parts: 2 neural compartments-glossopharyngeal and vagal-and the interperiosteodural compartment. CONCLUSIONS In this dissection study, the existence of the EDNAC concept in the jugular foramen was demonstrated, leading to the proposal of a novel 3-part compartmentalization, challenging the classical 2-part compartmentalization, of the jugular foramen.
-
Journal of neurosurgery · Sep 2018
Activation of the Notch-1 signaling pathway may be involved in intracerebral hemorrhage-induced reactive astrogliosis in rats.
OBJECTIVE Reactive astrogliosis, a key feature that is characterized by glial proliferation, has been observed in rat brains after intracerebral hemorrhage (ICH). However, the mechanisms that control reactive astrogliosis formation remain unknown. Notch-1 signaling plays a critical role in modulating reactive astrogliosis. ⋯ Remarkably, blockade of Notch-1 signaling with the specific inhibitor DAPT suppressed astrocytic proliferation and GFAP levels caused by ICH. In addition, DAPT improved neurological outcome after ICH. CONCLUSIONS Notch-1 signaling is a critical regulator of ICH-induced reactive astrogliosis, and its blockage may be a potential therapeutic strategy for hemorrhagic injury.
-
Journal of neurosurgery · Sep 2018
Multicenter Study Comparative StudyEarly versus late Gamma Knife radiosurgery following transsphenoidal surgery for nonfunctioning pituitary macroadenomas: a multicenter matched-cohort study.
OBJECTIVE Gamma Knife radiosurgery (GKRS) is frequently used to treat residual or recurrent nonfunctioning pituitary macroadenomas. There is no consensus as to whether GKRS should be used early after surgery or if radiosurgery should be withheld until there is evidence of imaging-defined progression of tumor. Given the high incidence of adenoma progression after subtotal resection over time, the present study intended to evaluate the effect of timing of radiosurgery on outcome. ⋯ CONCLUSIONS In this study, early GKRS was associated with a lower risk of radiological progression of subtotally resected nonfunctioning pituitary macroadenomas compared with expectant management followed by late radiosurgery. Delaying radiosurgery may increase patient risk for long-term adenoma progression. The timing of radiosurgery does not appear to significantly affect the rate of delayed endocrinopathy.