Journal of neurosurgery
-
Journal of neurosurgery · Aug 2024
Eloquent noneloquence: redefinition of cortical eloquence based on outcomes of superficial cerebral cavernous malformation resection.
Cerebral cavernous malformations (CMs) are pathological lesions that cause discrete cortical disruption with hemorrhage, and their transcortical resections can cause additional iatrogenic disruption. The analysis of microsurgically treated CMs might identify areas of "eloquent noneloquence," or cortex that is associated with unexpected deficits when injured or transgressed. ⋯ Transgyral and transsulcal resections that circumvent areas of traditional eloquence and navigate areas of presumed noneloquence may nonetheless result in unfavorable outcomes, demonstrating that brain long considered by neurosurgeons to be noneloquent may be eloquent. Eloquent hotspots within multiple large-scale networks redefine the neurosurgical concept of eloquence and call for more refined dissection techniques that maximize transsulcal dissection, intracapsular resection, and tissue preservation. Human connectomics, awareness of brain networks, and prioritization of cognitive outcomes require that we update our concept of cortical eloquence and incorporate this information into our surgical strategies.
-
Journal of neurosurgery · Aug 2024
Clinical evaluation of a stereotactic system for single-stage deep brain stimulation surgery under general anesthesia: technical note.
Conventional frame-based stereotactic systems have circumferential base frames, often necessitating deep brain stimulation (DBS) surgery in two stages: intracranial electrode insertion followed by surgical re-preparation and pulse generator implantation. Some patients do not tolerate awake surgery, underscoring the need for a safe alternative for asleep DBS surgery. A frame-based stereotactic system with a skull-mounted "key" in lieu of a circumferential base frame received US FDA clearance. The authors describe the system's application for single-stage, asleep DBS surgery in 8 patients at their institution and review its workflow and technical considerations. ⋯ The stereotactic system facilitated safe and effective asleep, single-stage DBS surgery, maintaining traditional lead accuracy standards.
-
Journal of neurosurgery · Aug 2024
Preclinical assessment of a noncooled MR thermometry-based neurosurgical laser therapy system.
MRI-guided laser interstitial thermal therapy (MRgLITT) has recently gained interest as an ablative stereotactic procedure for intractable epilepsy, movement disorders, and brain tumors. Conventionally, a LITT system consists of a laser generator and cooled laser applicator, which is a fiber optic core surrounded by a sheath through which cooled fluid is pumped. However, this footprint can make the system bulky and nonmobile, limit the maximum depth of targeting, and increase the chances of breakdown. Herein, the authors conduct a preclinical assessment of a noncooled MRgLITT system in a porcine model. ⋯ This preclinical assessment showed that the noncooled LITT system was able to precisely reach the target and create well-defined lesions within a margin of safety, without any adverse effects. MR thermometry software provided an accurate near-real-time temperature of the brain tissue, and dimensions of the lesion as visualized by the software correlated well with histopathological findings. Further studies to test the system's efficacy and safety in human subjects are in progress.