Clinical genetics
-
The IGF2/H19-imprinting control region (ICR1) functions as an insulator to methylation-sensitive binding of CTCF protein, and regulates imprinted expression of IGF2 and H19 in a parental origin-specific manner. ICR1 methylation defects cause abnormal expression of imprinted genes, leading to Beckwith-Wiedemann syndrome (BWS) or Silver-Russell syndrome (SRS). ⋯ In BWS, all reported mutations and the small deletion of the OCT-binding site, including our case, have occurred within repeat A2. These findings indicate that the OCT-binding site is important for maintaining an unmethylated status of maternal ICR1 in early embryogenesis.
-
The aim of this study was to identify the relative frequency of Huntington's disease (HD) and HD-like (HDL) disorders HDL1, HDL2, spinocerebellar ataxia type 2 (SCA2), SCA17, dentatorubral-pallidoluysian degeneration (DRPLA), benign hereditary chorea, neuroferritinopathy and chorea-acanthocytosis (CHAC), in a series of Brazilian families. Patients were recruited in seven centers if they or their relatives presented at least chorea, besides other findings. Molecular studies of HTT, ATXN2, TBP, ATN1, JPH3, FTL, NKX2-1/TITF1 and VPS13A genes were performed. ⋯ We detected HD in 89.4%, HDL2 in 3.8% and SCA2 in 1% of 104 Brazilian families. There were no cases of HDL1, SCA17, DRPLA, neuroferritinopathy, benign hereditary chorea or CHAC. Only six families (5.8%) remained without diagnosis.
-
Epilepsy is a common finding in patients with chromosomal macro- and micro-rearrangements but only few aberrations show a constant pattern of seizures. DNA array-based studies have reported causative copy number variations (CNVs) in 5-30% of patients with epilepsy with or without co-morbidities. The interpretation of many of the detected CNVs remains challenging. ⋯ In three patients we found likely causative de novo CNVs, i.e. deletions in 1q41q42.12 (3.4 Mb) and 19p13.2 (834 kb), and a mosaic two-segment duplication in 17p13.2 (218 kb) and 17p13.1 (422 kb). In six additional patients there were aberrations (a deletion in one and duplications in five patients) with uncertain clinical consequences. In total, the finding of causative chromosomal micro-rearrangements in 3 out of 43 patients (7%) and potentially causative CNVs in 6 additional patients (14%) with epilepsy and ID but without major malformations confirms the power of DNA arrays for the detection of new disease-related genetic regions.
-
Letter Case Reports
A novel mutation of the leptin gene in an Indian patient.