RöFo : Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin
-
Review Comparative Study
[MR-Guided pain therapy: principles and clinical applications].
X-ray fluoroscopy and computed tomography are frequently used to perform percutaneous interventions in pain therapy. The development of MR-compatible therapy needles now allows these interventions to be performed under MR imaging guidance. MR-guided interventions may be performed using most clinical MR scanners; however, systems with an open configuration are advantageous. ⋯ Fast acquisition techniques and image processing allow for continuous, near real-time MR imaging (so-called MR fluoroscopy) and interactive needle navigations, comparable to X-ray fluoroscopy and CT fluoroscopy. The purpose of this review is to illustrate and discuss general concepts of interventional MR imaging. A spectrum of interventional MR imaging procedures in spinal pain therapy is described and illustrated, including procedures such as lumbar facet joint injections, sacroiliac joint injections, lumbar spinal nerve root infiltrations and drug delivery to the lumbar sympathetic chain.
-
To investigate the tolerance of MR examinations in children and adolescents performed in a 1.5 Tesla MR scanner with an expanded bore diameter. ⋯ Pediatric MR imaging using a 1.5 Tesla MR scanner with an open design can be conducted in children and adolescents with excellent acceptance. The failure rate of 3.0 % of cases for pediatric MR imaging is comparable to that of a conventional low-field open MR scanner.
-
Analysis of the value of the perfusion parameter mean transit time (MTT) for the diagnosis of cerebral vasospasm after Subarachnoid Hemorrhage (SAH). Comparison with other perfusion parameters. An MTT threshold indicating the necessity of conventional angiography will be defined. ⋯ The analysis of the cortical perfusion parameter MTT is suitable for revealing clinically relevant global and regional vasospasm. A risk potential prediction is possible. An MTT of 3.2 s indicates a conventional angiography (DSA). This should be verified using a larger number of patients.
-
The development of a computerized method which allows a direct quantitative comparison of perfusion parameters. The display should allow a clear direct comparison of brain perfusion parameters in different vascular territories and over the course of time. The analysis is intended to be the basis for further evaluation of cerebral vasospasm after subarachnoid hemorrhage (SAH). The method should permit early diagnosis of cerebral vasospasm. ⋯ Computerized analysis of brain perfusion parameters with Angiotux 2D-ECCET is objective and ensures reproducible results. It may become the basis and a requirement for the analysis of minimal changes in brain perfusion prior to irreversible damage from posthemorrhagic vasospasm.