Pain
-
Behavioral and electrophysiological methods were used to investigate the hyperalgesia and allodynia, and functional changes in lumbar spinal dorsal horn neurons, in a model of neuropathic pain (Selzer et al. 1990) involving ligation of one-third to one-half of one sciatic nerve in rats. One and 5 weeks following ligation, there was a significant reduction in hind limb withdrawal latency to noxious radiant heat on the operated side and, to a lesser degree, on the unoperated side. By 16 weeks, heat withdrawal latencies were reduced about equally (approximately 40%) on both sides. ⋯ Mechanical receptive field areas were not significantly different between ipsi- and contralateral sides in the sham and 5-week post-ligation groups, or between sham and 5-week post-ligation groups. However, receptive field areas were significantly larger in the 16-week post-ligation group (both ipsi- and contralateral to ligation) compared to sham and 5-week post-ligation groups. The results suggest that allodynia may be associated with a chronic enhancement of neuronal mechanosensitivity, but that the thermal hyperalgesia is not associated with enhanced neuronal responsiveness or force of withdrawal.
-
Treatment of adult rats with a single dose of nerve growth factor (NGF, 1 mg/kg, i.p.) results in a prolonged hypersensitivity to noxious thermal stimulation which becomes noticeable within 30 min of administration and lasts for several days. A significant mechanical hyperalgesia develops within 7 h following injection of NGF and persists for up to 7 days. In the present set of experiments we describe certain quantitative features of this hyperalgesia. ⋯ Injection of the neurokinin NK1 receptor antagonist CP-96345 or its inactive enantiomer CP-96344 one day after NGF both induced a transient block of NGF-induced thermal hyperalgesia indicating a non-specific effect rather than an action at NK1 receptors. This was confirmed by finding no reversal of NGF-induced hyperalgesia by RP67580, another NK1 receptor blocker. These results suggest upregulation and activation of BK1 but not NK1 receptors as an additional, probably peripheral, mechanism for the late phase of NGF-induced thermal hyperalgesia.
-
We have examined the interactions between NMDA receptors and opioid effects in isolated neonatal rat spinal cord. Electrical stimulation of a lumbar dorsal root evoked a nociceptive-related slow ventral root potential (sVRP) recorded at the corresponding ipsilateral ventral root. The kappa opiate receptor agonist U69,593 (2.5 nM-1 microM) depressed sVRP area by a maximum of 80%, EC50 was approximately 33 nM. ⋯ MK-801 co-applied with morphine blocked the rebound increase in sVRP area following naloxone. These results suggest that (1) both mu and kappa receptor agonists exert similar selective depressant effects on spinal nociceptive neurotransmission; (2) mu but not kappa agonists exert prolonged excitatory effects that oppose the depression; and (3) NMDA receptors play a role in determining opioid analgesic potency and naloxone-precipitated hyperresponsiveness. The results may be related to initial steps in the development of acute tolerance to mu opioids, and suggest that tolerance to kappa opioids may have a different mechanism.
-
The present study describes a new test of tonic pain to be used as an animal model of persistent pain. First, pain responses and edema produced by subcutaneous injection of increasing doses of honey bee venom into the hind paw of the rat were quantified. Second, the effect of morphine and aspirin on the pain responses was investigated. ⋯ Analgesia was produced by morphine and aspirin, indicating that the bee venom test can be used to test analgesic drugs. Concurrent administration of bee venom and formalin produced pain responses similar to formalin alone, with a less profound interphase depression and a longer duration. The data suggest that the bee venom test is a valid animal model of experimental tonic pain.
-
In this study, Freund's adjuvant-induced monoarthritis in the rat hind paw was used to induce chronic pain and inflammation. In order to compare the basal outflow, electrically-evoked release and total content of calcitonin gene-related peptide like immunoreactivity (CGRP-LI) with previously reported changes in substance P (SP-LI), the lumbar enlargement of monoarthitic (complete Freund's adjuvant-treated, CFA rat) and control (incomplete Freund's adjuvant-treated, IFA rat) spinal cords were used. During the 4-wk period after injection, neither the basal nor the evoked release of CGRP-LI from CFA cords differed from controls. ⋯ However, the release of both peptides was significantly increased to the same extent in IFA and normal tissue but to a lesser extent in CFA cords, by superfusion with the opioid antagonist naloxone (1 microM). In conclusion, CGRP-LI, unlike SP-LI, did not appear to be susceptible to any changes in the lumbar enlargement of the rat spinal cord during inflammation of the hind paw. In addition, CGRP-LI release was increased by antagonism of opiate but not GABAB receptors, suggesting that during chronic inflammation of one hind paw, the GABAB ergic system, unlike the opioid system, might be activated to selectively inhibit the enhanced SP-LI release but not CGRP-LI release which is not changed.