Pain
-
Previous findings indicate that the brain stem descending system becomes more active in modulating spinal nociceptive processes during the development of persistent pain. The present study further identified the supraspinal sites that mediate enhanced descending modulation of behavior hyperalgesia and dorsal horn hyperexcitability (as measured by Fos-like immunoreactivity) produced by subcutaneous complete Freund's adjuvant (CFA). Selective chemical lesions were produced in the nucleus raphe magnus (NRM), the nuclei reticularis gigantocellularis (NGC), or the locus coeruleus/subcoeruleus (LC/SC). ⋯ The persistent hyperalgesia and neuronal hyperexcitability may be mediated in part by a descending pain facilitatory system involving NGC. Thus, the intensity of perceived pain and hyperalgesia is fine-tuned by descending pathways. The imbalance of these modulating systems may be one mechanism underlying variability in acute and chronic pain conditions.
-
The behaviour of rats with spinal nerve ligation-induced neuropathic pain was studied using tests developed to measure depression and anxiety. Adult male Sprague-Dawley rats were tested with the open field test, elevated plus maze, two compartment test and forced swimming test. Spontaneous motility was measured in a photocell observation box. ⋯ The results were also comparable when rats that developed a high degree of neuropathy were compared with the rats with low degree of neuropathy and the sham operated group. In conclusion, spinal nerve ligation injury of the spinal nerves L5-6 induces mechanical and cold allodynia, but it does not seem to produce general suffering or measurable anxiety to the animals. Furthermore, tests for anxiety and depression were not able to predict which animals were vulnerable to express symptoms of neuropathic pain after nerve injury.
-
Comparative Study
The effectiveness of spinal and systemic morphine on rat dorsal horn neuronal responses in the spinal nerve ligation model of neuropathic pain.
The treatment of pain arising from nerve injury can be difficult and the opioid sensitivity of neuropathic pain remains debatable. Clinical and animal studies report a wide range in the effectiveness of morphine, ranging from inadequate to potent analgesia. In this electrophysiological study we compare the effectiveness of spinal versus systemic administration of morphine on the natural and electrically evoked responses of spinal neurones of rats with a selective spinal nerve (L5/6) ligation. ⋯ This was especially clear for the C-fibre evoked and noxious natural stimuli evoked responses (mechanical and thermal) of spine nerve ligated rats. Our results suggest that the effectiveness of morphine may be partly related to the timing of the treatment relative to the duration of the neuropathy, the route of administration and also the neuropathic symptom. Spinal opioids may be a useful approach to pain control in neuropathic pain states where systemic routes produce inadequate analgesia.
-
Although intrathecally administered senktide, an agonist at the neurokinin3 receptor, attenuates withdrawal responses to noxious stimuli in the restrained animal, senktide increases motor neuron activity in spinal cords of neonatal rats and facilitates the electrically-evoked nociceptive flexor reflex in the adult rat. The present study examined the effects of intrathecal administration of senktide on withdrawal responses to noxious thermal and mechanical stimuli in awake, unrestrained, adult rats. Intrathecal administration of senktide (10 nmol) in chronically catheterized rats did not alter the responses elicited by a noxious mechanical stimulus (508 mN, von Frey monofilament). ⋯ Intravenous hexamethonium, a ganglionic nicotinic receptor antagonist, similarly increased paw temperature without decreasing withdrawal latency to radiant heat. Thus, the increased skin temperature associated with intrathecal senktide was insufficient to account for the thermal hyperalgesia observed. Collectively, the present work demonstrates that NK3 receptors mediate thermal but not mechanical hyperalgesia through a pathway that involves the production of NO.
-
The long-term changes in Fos like-immunoreactivity (Fos-LI) in the dorsal horn of the spinal cord following various peripheral nerve lesions remain controversial. This study considers such an approach with chronic constriction injury rats (CCI: loose ligations of the sciatic nerve), at 2 weeks after the surgery, when changes in spontaneous and evoked behaviour were clearly described. All rats used for Fos studies displayed allodynia to mechanical stimulation (decrease of 32% of the vocalization threshold to paw pressure). ⋯ In contrast, stroking of the nerve-injured paw induced a significant expression of Fos-LI in the superficial laminae (I-II) of the dorsal horn of CCI rats (19.5 +/- 3/sections, P = 0.027) which was greater than that observed in sham-operated (6.5 +/- 3/sections) or in normal rats (3.5 +/- 2/section). These modifications may reflect mechanical allodynia observed in behavioural studies and could be related to A beta fibers, which are known to be severely affected after the constriction of the nerve. These results suggest that this approach could be useful to study, at the cellular level, in freely moving rats, some pharmacological aspects of neuropathic pain.