Pain
-
The present study aimed to elucidate the distribution of gamma-aminobutyric acid (GABA) transporters in the spinal trigeminal nucleus after carrageenan injections. Dense GAT-1 and GAT-3 but very little GAT-2 immunoreactivity was observed in the normal rat spinal trigeminal nucleus. The GAT-1-positive glial cells in the normal rat spinal trigeminal nucleus contained dense bundles of glial filaments and had features of astrocytes. ⋯ Electron microscopy showed that transporter immunoreactivity in the spinal trigeminal nucleus of carrageenan-injected rats was predominantly present in glial processes, showing that the increase in the number of processes observed at light microscopy was due to increased immunoreactivity in glial processes. An increased expression of GABA transporters in the carrageenan-injected spinal trigeminal nucleus could therefore result in a faster removal of GABA from the synaptic cleft of GABAergic axon terminals compared to normal rats. This could result in reduced inhibition/increased activity of the trigeminothalamic neurons in the spinal trigeminal nucleus, and could contribute to hyperalgesia after carrageenan injections.
-
We have examined the effects of cannabinoid agonists on hyperalgesia in a model of neuropathic pain in the rat and investigated the possible sites of action. The antihyperalgesic activity of the cannabinoids was compared with their ability to elicit behavioural effects characteristic of central cannabinoid activity. WIN55,212-2 (0.3-10 mg kg(-1)), CP-55,940 (0.03-1 mg kg(-1)) and HU-210 (0.001-0.03 mg kg(-1)) were all active in a 'tetrad' of tests consisting of tail-flick, catalepsy, rotarod and hypothermia following subcutaneous administration, with a rank order of potency in each of HU-210 > CP-55,940 > WIN55,212-2. ⋯ The antihyperalgesic effect of WIN55,212-2 injected into the ipsilateral paw was blocked by subcutaneously administered SR141716A, but was not affected by intrathecally administered SR141716A. These data show that cannabinoids are highly potent and efficacious antihyperalgesic agents in a model of neuropathic pain. This activity is likely to be mediated via an action in both the CNS and in the periphery.
-
The analgesic actions of opioids are in large part mediated by activation of brainstem pain modulating neurons that depress nociceptive transmission at the level of the dorsal horn. The present study was designed to characterize the contribution of N-methyl-D-aspartate (NMDA)- and non-NMDA-mediated excitatory transmission within the rostral ventromedial medulla (RVM) to the activation of brainstem inhibitory output neurons and analgesia produced by systemic morphine administration. The NMDA receptor antagonist D-2-amino-5-phosophonopentanoic acid (AP5), the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX) or saline was infused into the RVM of lightly anesthetized rats while recording the activity of identified pain modulating neurons: 'off-cells', thought to inhibit nociceptive transmission, and 'on-cells', thought to facilitate nociception. ⋯ This excitatory process may play a role in the analgesic synergy produced by simultaneous mu-opioid activation at different levels of the neuraxis. Second, reflex-related activation of on-cells is mediated by a non-NMDA receptor, and this activation does not appear to play a significant role in regulating reflex responses to acute noxious stimuli. Excitatory amino acid-mediated excitation thus has at least two distinct roles within the RVM, activating off-cells and on-cells under different conditions.
-
We investigated the effects of acute and chronic tramadol treatment on T lymphocyte function and natural killer (NK) cell activity in rats receiving chronic constriction injury (CCI) of the sciatic nerve. T lymphocyte function was evaluated based on concanavalin-A (ConA)- and phytohemagglutinin (PHA)-induced splenocyte proliferation. NK cell activity was measured by lactic acid dehydrogenase release assay. ⋯ However, the activity of splenocyte proliferation was decreased in the 80 mg/kg per day group when compared with the saline and 40 mg/kg per day groups. These data suggest that tramadol treatment has an immunological profile different from pure mu-opioid agonists like morphine, which is known to suppress both NK cell activity and T lymphocyte proliferation at a subanalgesic dose in CCI rats. Considering analgesic and immunosuppressive effects, tramadol treatment may be a better choice than morphine for treatment of chronic neuropathic pain, particularly in patients with compromised immunity.