Pain
-
Activation of adenosine A1 receptors by endogenous adenosine or synthetic agonists produces anti-nociception in animal models of acute pain and also reduces hypersensitivity in models of inflammatory and nerve-injury pain. Allosteric adenosine modulators facilitate adenosine agonist binding to the A1 receptor. The purpose of the current study was to examine the effect, mechanisms of action, and interaction with noradrenergic systems of intrathecal (i.t.) or oral administration of the allosteric adenosine modulator T62 in a rat model of neuropathic pain. ⋯ Anti-dopamine hydroxylase (DH)-saporin treatment reduce spinal norepinephrine content by 97%, accompanied by an almost complete loss of DH immunoreactive axons in the spinal dorsal horn and neurons in the locus coeruleus. The effect of T62 was completely lost in animals treated with anti-DH-saporin. These data support the hypothesis that activation of the A1 receptor by the allosteric modulator, T62, produces anti-nociception via spinal noradrenergic activation.
-
Hypersensitivity after tissue injury is an expression of neuronal plasticity in the central nervous system. This has been explored most extensively using in vitro preparations and animal models of inflammatory pain and chemical irritation. For pain after surgery, a similar process has been proposed. ⋯ Sensitization was re-established in seven of eight neurons 2 h after injection as the local anesthetic dissipated. These results indicate that activation of DHNs during plantar incision and sensitization 1 h later are not necessary for subsequent pain behaviors. Because sensitization was reversed 90 min after plantar incision and then re-established as the local anesthetic effect diminished, enhanced responsiveness of DHN requires ongoing afferent input during the first day after incision.
-
Treatment of pain in newborns is associated with problematic drug side effects. Previous studies demonstrate that an intraoral infusion of sucrose and other sweet components of mother's milk are effective in alleviating pain in infant rats and humans. These findings are of considerable significance, as sweet tastants are used in pain and stress management in a number of clinical procedures performed in human infants. ⋯ Taken together, these results indicate that intraoral sucrose alleviates transient pain in response to thermal and mechanical stimuli, and also effectively reduces inflammatory hyperalgesia and allodynia. Sucrose-induced analgesia is age-dependent and limited to the pre-weaning period in rats. The age-dependency of sucrose-induced analgesia and its differential maturation for the fore- and hindpaw may be due to developmental changes in endogenous analgesic mechanisms and developmental modulation of the interaction between gustatory and pain modulatory pathways.
-
Cannabinoids have previously been shown to possess analgesic properties in a model of visceral hyperalgesia in which the neurotrophin, nerve growth factor (NGF), plays a pivotal role. The purpose of this study was to investigate the antihyperalgesic effects of two cannabinoids in NGF-evoked visceral hyperalgesia in order to test the hypothesis that endocannabinoids may modulate the NGF-driven elements of inflammatory hyperalgesia. Intra-vesical installation of NGF replicates many features of visceral hyperalgesia, including a bladder hyper-reflexia and increased expression of the immediate early gene c fos in the spinal cord. ⋯ However, neither CB1 nor CB2 receptor antagonists altered the action of anandamide. PEA-induced reduction in Fos expression was abrogated by SR144528. These data add to the growing evidence of a therapeutic potential for cannabinoids, and support the hypothesis that the endogenous cannabinoid system modulates the NGF-mediated components of inflammatory processes.
-
The effects of intrathecal (i.t.) administration of prostaglandin E2 (PGE2) and prostaglandin F2 (PGF2) on behavioral and spinal neuronal responses to mechanical and thermal stimuli were examined in rats. i.t. Administration of either PGE2 (1-100 nmol) or PGF2 (1-100 nmol) produced a robust, dose-dependent mechanical hyperalgesia, but only a weak thermal hyperalgesia and touch-evoked allodynia. Spinal administration of either PGE2 (100 pmol-100 nmol) or PGF2 (1-100 nmol) produced dose-dependent increases in responses of nociceptive specific (NS) neurons to mechanical stimuli, but only modest increases in wide dynamic range (WDR) neurons to mechanical stimuli. ⋯ Both PGE2 and PGF2 produced increases in background discharges of WDR and NS neurons, although this effect was most consistently observed with WDR neurons and PGE2. These behavioral and electrophysiological data suggest that mechanical hyperalgesia induced by spinal administration of PGE2 and PGF2 is mediated mainly by changes in NS neurons. The weak thermal hyperalgesia may reflect changes in WDR neurons.