Pain
-
Amitriptyline, nortriptyline, imipramine, doxepin, desipramine, protriptyline, trimipramine, and maprotiline are tricyclic antidepressants (TCAs) used orally in treating major depressive disorders. Recent studies showed that amitriptyline is more potent in blocking the sciatic nerve functions in vivo by local injection than bupivacaine, a long-acting local anesthetic. We therefore tested whether various TCAs could likewise act as local anesthetics in vivo after single injection via the rat sciatic notch. ⋯ With this in vitro expression system, TCAs appear more potent than bupivacaine as Na(+) channel blockers in Nav1.5 Na(+) channels. We suggest that the ability of TCAs to pass through various membrane barriers within peripheral nerve trunks is crucial to their local anesthetic efficacy in vivo. TCAs with a tertiary amine appear more effective in penetrating these membrane barriers than TCAs with a secondary amine.
-
Comparative Study
Involvement of the anterior pretectal nucleus in the control of persistent pain: a behavioral and c-Fos expression study in the rat.
The anterior pretectal nucleus (APtN) participates in nociceptive processing and in the activation of central descending mechanisms of pain control. In this study we used behavioral tests (incisional pain and carrageenan-induced inflammatory pain) and c-Fos expression changes to examine the involvement of the APtN in the control of persistent pain in rats. A 1cm longitudinal incision through the skin and fascia of the plantar region (large incision), or a 0.5cm longitudinal incision through the skin only (small incision) was used, and the postoperative incisional allodynia was evaluated with von Frey filaments. ⋯ In the ipsilateral spinal cord, the incision-induced increase in the number of positive cells was significantly reduced in the superficial lamina and significantly increased in the deep lamina of animals previously treated with bupivacaine in the contralateral APtN. In conclusion, the integrity of the APtN is necessary to reduce the severity of the responses to persistent injury. The results also are in agreement with the current notion that persistent noxious inputs to the APtN tonically activate a descending mechanism that excites superficial cells and inhibits deep cells in the spinal dorsal horn.