Pain
-
This paper develops a prognostic approach to defining chronic back pain. Possible and probable chronic back pain were defined, respectively, by a 50% and an 80% (or greater) probability of future clinically significant back pain. We assessed whether an empirically derived chronic pain classification satisfied these validating criteria among 1213 primary care back pain patients assessed at baseline and at 1, 2 and 5 year follow-ups. ⋯ At baseline and 1 year, 6.1 and 4.4% of study patients met or exceeded the 80% risk threshold for probable chronic back pain. An additional 20.3% at baseline and 12.5% at 1 year met or exceeded the 50% risk threshold for possible chronic back pain. Defining chronic pain prospectively, by risk thresholds for future clinically significant pain, provides an empirically grounded approach to chronic pain assessment.
-
Spinal NMDA receptors (NMDA R) are important in neuropathic sensitisation and acute administration of antagonists can provide temporary attenuation of sensitisation. If establishment of the chronic pain state could be prevented by brief administration of such agents at or around the time of nerve injury (pre-emptive analgesia) it might be possible to avoid many of the unacceptable side effects associated with repeated administration of these or other antagonists. Several reports describe aspects of effective pre-emptive analgesia from NMDA R antagonists in animal models of neuropathic pain. ⋯ These changes were attenuated following NMDA receptor antagonist pre-treatment. Thirdly, we investigated the pharmacological properties of residual mechanical allodynia and cold allodynia that remained after pre-emptive treatment and revealed a greater sensitivity to NMDA R antagonists. These findings indicate that in addition to a marked suppression of thermal hyperalgesia and cold allodynia, pre-emptive treatment with NMDA R antagonist causes a lasting change in spinal NMDA R complexes such that remaining mechanical allodynia should be more effectively targeted by NMDA R antagonists.
-
Comparative Study
GD3 synthase gene knockout mice exhibit thermal hyperalgesia and mechanical allodynia but decreased response to formalin-induced prolonged noxious stimulation.
Gangliosides are a family of sialic acid-containing glycosphingolipids that are highly enriched in the mammalian nervous system. In particular, b- and c-series gangliosides, all of which contain alpha-2,8 sialic acids, have been considered to play important roles in adhesion, toxin-binding, neurite extension, cell growth and apoptosis. However, the neurobiological functions of these series of gangliosides remain largely unknown. ⋯ No significant differences in the conduction velocity of the sciatic nerve, and no apparent morphologic differences in the spinal cord and the sciatic nerve were detected between the wild-type and the mutant mice. These results suggested that b- and c-series gangliosides are critical in the development and/or maintenance of the sensory nervous system responsible for the transmission of acute pain sensation and pain modulation. Moreover, they play an important role in the development of hyperalgesia induced by inflammation.
-
Comparative Study
Spinal-supraspinal serotonergic circuits regulating neuropathic pain and its treatment with gabapentin.
Not all neuropathic pain patients gain relief from current therapies that include the anticonvulsant, gabapentin, thought to modulate calcium channel function. We report a neural circuit that is permissive for the effectiveness of gabapentin. Substance P-saporin (SP-SAP) was used to selectively ablate superficial dorsal horn neurons expressing the neurokinin-1 receptor for substance P. ⋯ This circuit is therefore a crucial determinant of the abnormal neuronal and behavioural manifestations of neuropathy and importantly, the efficacy of gabapentin. As this spino-bulbo-spinal circuit contacts areas of the brain implicated in the affective components of pain, this loop may represent a route by which emotions can influence the degree of pain in a patient, as well as the effectiveness of the drug treatment. These hypotheses are testable in patients.
-
Comparative Study
Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice.
Capsaicin-sensitive, TRPV1 (transient receptor potential vanilloid 1) receptor-expressing primary sensory neurons exert local and systemic efferent effects besides the classical afferent function. The TRPV1 receptor is considered a molecular integrator of various physico-chemical noxious stimuli. In the present study its role was analysed in acute nociceptive tests and chronic neuropathy models by comparison of wild-type (WT) and TRPV1 knockout (KO) mice. ⋯ Chronic mechanical hyperalgesia evoked by streptozotocin-induced diabetic and cisplatin-evoked toxic polyneuropathy occurred earlier and were greater in the TRPV1 KO group. In both polyneuropathy models, at time points when maximal difference in mechanical hyperalgesia between the two groups was measured, plasma somatostatin concentrations determined by radioimmunoassay significantly increased in WT but not in TRPV1 KO mice. It is concluded that sensitization/activation of the TRPV1 receptor plays a pronociceptive role in certain models of acute tissue injury but under chronic polyneuropathic conditions it can initiate antinociceptive counter-regulatory mechanisms possibly mediated by somatostatin released from sensory neurons.