Pain
-
Clinical Trial
Physical and psychological factors maintain long-term predictive capacity post-whiplash injury.
Higher initial levels of pain and disability, older age, cold hyperalgesia, impaired sympathetic vasoconstriction and moderate post-traumatic stress symptoms have been shown to be associated with poor outcome 6 months following whiplash injury. This study prospectively investigated the predictive capacity of these variables at a long-term follow-up. Sixty-five of an initial cohort of 76 acutely injured whiplash participants were followed to 2-3 years post-accident. ⋯ The latter two groups showed only persistent deficits in cervical muscle recruitment patterns. Higher initial NDI scores (OR 1.00-1.1), older age (OR 1.00-1.13), cold hyperalgesia (OR 1.1-1.13) and post-traumatic stress symptoms (OR 1.03-1.2) remained significant predictors of poor outcome at long-term follow-up (r2=0.56). The robustness of these physical and psychological factors suggests that their assessment in the acute stage following whiplash injury will be important.
-
Randomized Controlled Trial
Reduction of intractable deafferentation pain by navigation-guided repetitive transcranial magnetic stimulation of the primary motor cortex.
The precentral gyrus (M1) is a representative target for electrical stimulation therapy of pain. To date, few researchers have investigated whether pain relief is possible by stimulation of cortical areas other than M1. According to recent reports, repetitive transcranial magnetic stimulation (rTMS) can provide an effect similar to that of electrical stimulation. ⋯ Results indicated a statistically significant effect lasting for 3 hours after the stimulation of M1 (p<0.05). Stimulation of other targets was not effective. The M1 was the sole target for treating intractable pain with rTMS, in spite of the fact that M1, S1, preM, and SMA are located adjacently.
-
Recent studies suggest that reactive oxygen species (ROS) are critically involved in neuropathic pain. Although vitamin E is a well-known antioxidant, its efficacy on chronic pain is not known. This study investigated the efficacy and mechanisms of vitamin E analgesia in a rat model of neuropathic pain produced by spinal nerve ligation. ⋯ In spinal dorsal horn neurons, vitamin E reduced evoked responses to mechanical stimuli as well as the sizes of their receptive fields. In addition, levels of pNR1 in neuropathic rats were also reduced by vitamin E injection. These data suggest that vitamin E produces analgesia in neuropathic rats that is, at least in part, mediated by reducing central sensitization which, in turn, is induced by peripheral nerve injury.
-
Chronic opioid-induced analgesic tolerance remains a major obstacle to improving clinical management of moderate to severe chronic pain. Our understanding of the underlying mechanisms for opioid tolerance is only partially understood at present. In this study, we investigated the effects of chronic morphine on GABA(A) receptor-mediated synaptic transmission, a major opioid target for pain inhibition, and the behavioral role of GABA synaptic transmission in the development of morphine tolerance. ⋯ Behaviorally, a low dose of GABA(A) receptor antagonist bicuculline microinjected into the NRM, ineffective alone, blocked morphine antinociception in control rats, but failed to do so in morphine-tolerant rats. With chronic treatment through daily NRM microinjections, bicuculline augmented the development of morphine tolerance, whereas the GABA(A) receptor agonist muscimol or H89 significantly attenuated the development of morphine tolerance. These results suggest that chronic morphine increases GABA synaptic activity through upregulation of the AMP system in morphine-tolerant NRM neurons and that while chronic GABA(A) receptor antagonism in the NRM augments morphine tolerance, chronic activation of NRM GABA(A) receptors or PKA inhibition reduces morphine tolerance with increased analgesic efficacy of chronic morphine.
-
Inflammation or injury of peripheral tissue causes release of chemical mediators, including 5-hydroxytryptamine (5-HT), which is involved in the facilitation of nociceptive transmission and the induction of hyperalgesia. The present study examined the effect of a selective 5-HT2A receptor antagonist, sarpogrelate, on hyperalgesia and allodynia induced by thermal injury in rats. Mild thermal injury to the hindpaw produces thermal hyperalgesia in the injured area (primary thermal hyperalgesia) and mechanical allodynia in sites adjacent to the primary area (secondary mechanical allodynia). ⋯ The tissue concentration of 5-HT was measured using microdialysis. Concentrations of 5-HT increased after thermal injury in both primary and secondary areas, and the increase was not attenuated by pretreatment with sarpogrelate (100 mg/kg, i.p.). These data suggest that 5-HT released in peripheral tissues after thermal injury sensitizes primary afferent neurons and produces mechanical allodynia and thermal hyperalgesia via peripheral 5-HT2A receptors.