Pain
-
Opioid neurotransmission modulates pain and negative affect during psychological stress. To determine whether these effects differ between men and women, the opioid receptor antagonist naltrexone or placebo was administered double-blind to 21 men and 22 women before they completed 30 min of difficult mental arithmetic. To heighten negative affect, participants received seven moderately noxious electric shocks during the math task, which were believed to be contingent upon performance. ⋯ Within the naltrexone condition, pain ratings increased most in the most discouraged subjects. However, this relationship was absent in placebo recipients, implying that the hyperalgesic effect of psychological distress was tempered by opioid release. Greater stress-evoked discouragement in women than men may explain why cold-induced pain increased after the math task only in women administered naltrexone.
-
There is evidence that elevated tissue concentrations of glutamate may contribute to pain and sensitivity in certain musculoskeletal pain conditions. In the present study, the food additive monosodium glutamate (MSG) was injected intravenously into rats to determine whether it could significantly elevate interstitial concentrations of glutamate in the masseter muscle and whether MSG administration could excite and/or sensitize slowly conducting masseter afferent fibers through N-methyl-D-aspartate (NMDA) receptor activation. The interstitial concentration of glutamate after systemic injection of isotonic phosphate-buffered saline (control) or MSG (10 and 50mg/kg) was measured with a glutamate-selective biosensor. ⋯ Intravenous injection of ketamine (1mg/kg), 5 min prior to MSG, prevented the MSG-induced decreases in the mechanical threshold of masseter afferent fibers. The present results indicate that a 2- to 3-fold elevation in interstitial glutamate levels in the masseter muscle is sufficient to excite and induce afferent mechanical sensitization through NMDA receptor activation. These findings suggest that modest elevations of interstitial glutamate concentration could alter musculoskeletal pain sensitivity in humans.
-
Metastatic bone cancer causes severe pain that is primarily treated with opioids. A model of bone cancer pain in which the progression of cancer pain and bone destruction is tightly controlled was used to evaluate the effects of sustained morphine treatment. In cancer-treated mice, morphine enhanced, rather than diminished, spontaneous, and evoked pain; these effects were dose-dependent and naloxone-sensitive. ⋯ These results indicate that sustained morphine increases pain, osteolysis, bone loss, and spontaneous fracture, as well as markers of neuronal damage in DRG cells and expression of pro-inflammatory cytokines. Morphine treatment may result in "add-on" mechanisms of pain beyond those engaged by sarcoma alone. While it is not known whether the present findings in this model of osteolytic sarcoma will generalize to other cancers or opioids, the data suggest a need for increased understanding of neurobiological consequences of prolonged opioid exposure which may allow improvements in the use of opiates in the effective management of cancer pain.
-
Sex differences in endogenous pain modulation were tested in healthy volunteers (32 men, 30 women). Painful contact heat stimuli were delivered to the right leg alone, and then in combination with various electrical conditioning stimuli delivered to the left forearm. Four conditioning protocols were applied to each subject in separate sessions: mild, non-painful (control); distracting; stressful-yet-non-painful; strongly painful. ⋯ Regression analysis revealed that the magnitude of pain-evoked hypoalgesia was predicted by the perceived distraction (p=0.003) and stress (p=0.04) produced by the painful conditioning stimulation, providing evidence that distraction and stress contribute to pain-evoked hypoalgesia. However, the contribution of stress to pain-evoked hypoalgesia differed by sex (p=0.02), with greater perceived stress associated with greater hypoalgesia in men and the opposite trend in women, suggesting sex differences in the mechanisms underlying pain-evoked hypoalgesia. This study provides indirect evidence that multiple neural mechanisms are involved in endogenous pain modulation and suggests that sex-specific aspects of these systems may contribute to greater pain sensitivity and higher prevalence of many chronic pain conditions among women.