Pain
-
Using a gene expression analysis approach we found that the mRNA encoding the lysosomal cysteine protease cathepsin S (CatS) was up-regulated in rat dorsal root ganglia (DRG) following peripheral nerve injury. CatS protein was expressed in infiltrating macrophages in DRG and near the site of injury. At both sites CatS expression progressively increased from day 3 to day 14 after injury. ⋯ In nerve-injured rats, mechanical hyperalgesia, but not allodynia, was significantly reversed for up to 3h by systemic administration of a non-brain penetrant, irreversible CatS inhibitor (LHVS, 3-30 mg/kg s.c.). Depletion of peripheral macrophages by intravenous injection of liposome encapsulate clodronate (1ml, 5 mg/ml) partially reduced established mechanical hyperalgesia but not allodynia, and abolished the anti-hyperalgesic effect of LHVS. Our results demonstrate a pro-nociceptive effect of CatS and indicate that endogenous CatS released by peripheral macrophages contributes to the maintenance of neuropathic hyperalgesia following nerve injury.
-
Neuromedin U (NMU) has recently been reported to have a role in nociception and inflammation. To clarify the function of the two known NMU receptors, NMU receptor 1 (NMUR1) and NMU receptor 2 (NMUR2), during nociception and inflammation in vivo, we generated mice in which the genes for each receptor were independently deleted. Compared to wild type littermates, mice deficient in NMUR2 showed a reduced thermal nociceptive response in the hot plate, but not in the tail flick, test. ⋯ In contrast, NMUR1-deficient mice did not show any nociceptive differences compared to their wild type littermates in any of the behavioral tests used. We observed the same magnitude of inflammation in both lines of NMU receptor mutant mice compared to their wild type littermates after injection with complete Freund's adjuvant (CFA), suggesting no requirement for either receptor in this response. Thus, the pro-nociceptive effects of NMU in mice appear to be mediated through NMUR2, not NMUR1.