Pain
-
The opioid and endocannabinoid systems mediate analgesia expressed upon re-exposure to a contextually aversive stimulus (fear-conditioned analgesia; FCA), and modulate the mitogen-activated protein kinase (MAPK) pathway. However, an interaction between the opioid and endocannabinoid systems during FCA has not been investigated at the behavioural or molecular level. FCA was modeled in male Lister-hooded rats by assessing formalin-evoked nociceptive behaviour in an arena previously paired with footshock. ⋯ None of the drugs affected formalin-evoked nociceptive behaviour or phospho-ERK1/2 expression in non-fear-conditioned rats. These data suggest that endocannabinoid-mediated enhancement of FCA is abolished by pharmacological blockade of opioid receptors as well as CB(1) or CB(2) receptors. Both pharmacological enhancement (with URB597) and attenuation (with naloxone) of this form of endogenous analgesia were associated with reduced expression of phospho-ERK1/2 in the amygdaloid complex arguing against a causal role for ERK1/2 signaling in the amygdala during expression of FCA or its modulation by opioids or cannabinoids.
-
It has been suggested that spinal cord long-term potentiation (LTP) may contribute to hypersensitivity and hyperalgesia. We have investigated if noxious stimulus-induced spinal cord LTP might have a long lasting effect on supraspinal neuronal activity. First, we verified that spinal LTP was induced by electrical high frequency stimuli (HFS) conditioning applied to the sciatic nerve. ⋯ The study demonstrates that PET may be used as an in vivo method to study regional brain metabolic activity between different conditions. It is concluded that noxious sciatic stimuli which induce spinal cord LTP also affect supraspinal metabolic activity. We suggest that these changes might illustrate a supraspinal maladaptive dysfunction involved in pain hypersensitivity and hyperalgesia.