Pain
-
Pain following injury to the nervous system is characterized by changes in sensory processing including pain. Although there are many studies describing pain evoked by peripheral stimulation, we have recently reported that pain can be evoked in subjects with complete spinal cord injury (SCI) during a motor imagery task. In this study, we have used functional magnetic resonance imaging to explore brain sites underlying the expression of this phenomenon. ⋯ In addition, in the SCI subjects, the magnitude of activation in the perigenual anterior cingulate cortex and right dorsolateral prefrontal cortex was significantly correlated with absolute increases in pain intensity. These regions expanded to include right and left anterior insula, supplementary motor area and right premotor cortex when percentage change in pain intensity was examined. This study demonstrates that in SCI subjects with neuropathic pain, a cognitive task is able to activate brain circuits involved in pain processing independently of peripheral inputs.
-
Habituation to repetitive painful stimulation may represent an important protection mechanism against the development of chronic pain states. However, the exact neurobiological mechanisms of this phenomenon remain unclear. In this study we (i) explore the somatotopic specificity of pain attenuation over time and (ii) investigate the role of the endogenous opioid system in its development. ⋯ This effect was less pronounced at the untreated arm compared to the treated arm and even weaker in the leg, displaying a significant Stimulation-Site x Time interaction. The development of pain habituation was unaffected by the opioid antagonist naloxone. Taken together, these results strongly support the role of central components in the mechanism of pain habituation that do not directly involve the endogenous opioid system.
-
Injection of nerve growth factor (NGF) into the masseter muscle is not painful but does induce a localized, quick onset ( approximately 1h) and long-lasting mechanical sensitization in healthy human subjects. We tested the hypothesis that human NGF mechanically sensitizes masseter muscle nociceptors by increasing the sensitivity of peripheral N-methyl-d-aspartate (NMDA) receptors. Co-expression of the NR2B subunit of the NMDA receptor with P75 and TrkA NGF receptors by trigeminal ganglion neurons that innervate the masseter muscle was investigated immunohistochemically. ⋯ There was no effect of NGF on glutamate-evoked nociceptor discharge or glutamate-induced mechanical sensitization. Additional experiments indicated that NGF-induced mechanical sensitization could be partially attenuated with TrkA receptor antibodies, but not P75 receptor antibodies. These findings indicate that human NGF-induced sensitization of masseter nociceptors results, in part, from the activation of TrkA receptors, but does not appear to be mediated through enhanced peripheral NMDA receptor activity.
-
The transcription factor nuclear factor kappa B (NF-kappaB) is a key regulator of inflammatory processes in reactive glial cells. We utilized a transgenic mouse model (GFAP-IkappaBalpha-dn) where the classical NF-kappaB pathway is inactivated by overexpression of a dominant negative (dn) form of the inhibitor of kappa B (IkappaBalpha) in glial fibrillary acidic protein (GFAP)-expressing cells, which include astrocytes, Schwann cells, and satellite cells of the dorsal root ganglion (DRG) and sought to determine whether glial NF-kappaB inhibition leads to a reduction in pain behavior and inflammation following chronic constriction injury (CCI) of the sciatic nerve. As expected, following CCI nuclear translocation, and hence activation, of NF-kappaB was detected only in the sciatic nerve of wild type (WT) mice, and not in GFAP-IkappaBalpha-dn mice, while upregulation of GFAP was observed in the sciatic nerve and DRGs of both WT and GFAP-IkappaBalpha-dn mice, indicative of glial activation. ⋯ Additionally, gene expression of TNF, CCL2, and CCR2 was reduced in the DRGs of transgenic mice compared to those of WT after CCI. We can therefore conclude that transgenic inhibition of NF-kappaB in GFAP-expressing glial cells attenuated pain and inflammation after peripheral nerve injury. These findings suggest that targeting the inflammatory response in Schwann cells and satellite cells may be important in treating neuropathic pain.
-
High density Nociceptin/Orphanin FQ (N/OFQ) and its receptor (NOPr) have been found in the ventrolateral periaqueductal gray (vlPAG), a main output pathway involved in the descending pain-control system. Our previous study demonstrated that the microinjection of N/OFQ into the vlPAG markedly facilitated nociceptive responses of spinal dorsal horn neurons. The aim of the present work was to further provide evidence for the supraspinal mechanisms of action for N/OFQ-mediated nociceptive facilitation by examining the effect of N/OFQ in the vlPAG on neurotransmitter release in the descending pain-control system, including the nucleus raphe magnus (NRM), nucleus reticularis gigantocellularis (NGC) and dorsal horn of the spinal cord. ⋯ In the NRM, intra-vlPAG injection of N/OFQ significantly decreased 5-HT, NE, and Glu, but increased GABA release. Differently, in the NGC, both NE and GABA releases were attenuated by intra-vlPAG of N/OFQ, whereas the concentration of 5-HT and Glu exhibited a trend to increase. These findings provide direct support for the hypothesis that intra-PAG of N/OFQ-induced facilitation of nociceptive responses is associated with the release of 5-HT, NE, and amino acids.