Pain
-
This study assessed functional brain activation in rats during expectation of visceral pain. Male rats were trained in step-down passive avoidance (PA) for 2 days. Upon stepping down from a platform, conditioned animals received noxious colorectal distension delivered through a colorectal balloon, whereas the balloon in control rats remained uninflated. ⋯ The amygdala and cerebellar hemispheres formed another positively connected cluster, which was negatively connected with the corticostriatal cluster, suggesting corticolimbic modulation. Prelimbic cortex, nucleus accumbens, and anterior insula emerged in conditioned animals as hubs. Our results show that during retrieval of PA, brain areas implicated in PA expression as well as those implicated in acute visceral pain processing were recruited, in line with findings from human brain imaging studies on pain expectation.
-
Persistent pain after resolution of clinically appreciable signs of arthritis poses a therapeutic challenge, and immunosuppressive therapies do not meet this medical need. To investigate this conversion to persistent pain, we utilized the K/BxN serum transfer arthritis model, which has persistent mechanical hypersensitivity despite the resolution of visible inflammation. Toll-like receptor (TLR) 4 has been implicated as a potential therapeutic target in neuropathic and other pain models. ⋯ WT arthritic mice had reduced spinal levels of the anti-inflammatory prostaglandin 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) on day 6, compared to IT LPS-RS-treated mice. Direct IT application of 15d-PGJ(2) (0.5 μg) on day 6 improved mechanical hypersensitivity in arthritic mice within 15 min. Hence, TLR4 signaling altered spinal bioactive lipid profiles in the serum transfer model and played a critical role in the transition from acute to chronic postinflammatory mechanical hypersensitivity.
-
This study investigated the effects of pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K)γ in the pruriceptive, inflammatory, and nociceptive responses induced by trypsin in mice. The animals were orally treated with the selective PI3Kγ inhibitor AS605240 (0.3-30 mg/kg) 30 minutes beforehand. In separate groups, AS605240 was given by intrathecal (i.t.) or intracerebroventricular (i.c.v.) routes. ⋯ In contrast, the oral administration of AS605240 did not significantly modify capsaicin-evoked nociception, although this inhibitor was effective when dosed by i.c.v. route. Noteworthy, AS605240 (1mg/kg) was able to prevent c-Fos and phospho-Akt immunopositivity at the spinal cord of trypsin-injected mice, either into the back of the neck or the paws. To conclude, PI3Kγ inhibition might well represent a valuable alternative for treating inflammatory and painful conditions, as well as pruritus.
-
The role of muscarinic receptor subtype-1 (M1) in chronic pain is unclear. In an attempt to gain an understanding of its role, we have tested xanomeline, an M1/M4-preferring agonist, together with nonselective (scopolamine and pirenzepine), and selective (MT-7 and MT-3) muscarinic receptor (M1 and M4, respectively) antagonists in a number of inflammatory and neuropathic pain models. Xanomeline potently and effectively reversed tactile allodynia and heat hyperalgesia associated with established neuropathic and inflammatory pain in both rat and mouse models. ⋯ The highly selective M1 receptor toxin, MT-7, almost completely abolished the analgesic response to xanomeline when administered supraspinally. However, the highly selective M4 receptor toxin, MT-3, only marginally reversed the analgesia when given supraspinally, and had no effect when given spinally. In conclusion, the data presented show that the nonselective muscarinic agonist xanomeline is analgesic in models of persistent pain and suggest that the activation of supraspinal M1 receptors, and to a lesser extent supraspinal M4 receptors, contributes to that analgesia.