Pain
-
The human 'pain network' includes cortical areas that are activated during the response to painful stimuli (termed category 1) or during psychological processes that modulate pain, for example, distraction (termed category 2). These categories include parts of the parasylvian (PS), medial frontal (MF), and paracentral cortex (S1&M1). Here we test the hypothesis that causal interactions both within and between category 1 and category 2 modules occur during attention to a painful stimulus. ⋯ The proportion of contacts involved in interactions with PS was greater during distraction vs attention while activation was less, which suggests that distraction involves an inhibitory process in PS. Functional interactions between categories were overwhelmingly in the direction from category 2>1, particularly for contacts in MF which often had a driver role. These results demonstrate that MF is densely interconnected throughout the 'pain network' so that stimulation of MF might be used to disrupt the 'pain network' as a therapy for pain.
-
This study assessed functional brain activation in rats during expectation of visceral pain. Male rats were trained in step-down passive avoidance (PA) for 2 days. Upon stepping down from a platform, conditioned animals received noxious colorectal distension delivered through a colorectal balloon, whereas the balloon in control rats remained uninflated. ⋯ The amygdala and cerebellar hemispheres formed another positively connected cluster, which was negatively connected with the corticostriatal cluster, suggesting corticolimbic modulation. Prelimbic cortex, nucleus accumbens, and anterior insula emerged in conditioned animals as hubs. Our results show that during retrieval of PA, brain areas implicated in PA expression as well as those implicated in acute visceral pain processing were recruited, in line with findings from human brain imaging studies on pain expectation.
-
Even though psychological interventions are well established in the treatment of pediatric chronic pain, there is a clear need for further development, especially with severely disabled patients. However, optimizing effectiveness in psychological treatments for pain requires clarification of the mechanisms of action. Studies addressing change processes are scarce, however, particularly in relation to pediatric chronic pain. ⋯ Results illustrated that pain impairment beliefs and pain reactivity were the only variables that significantly mediated the differential effects of treatment on outcomes at follow-up. Also, these 2 mediators were shown to independently predict effects in outcome variables at follow-up while controlling for earlier effects in outcome, but only for the ACT condition. Although tentative, the pattern of results suggests that variables consistent with psychological flexibility mediate the effects of ACT-based interventions to improve functioning in patients with chronic debilitating pain.
-
Cutaneous inflammation induced by ultraviolet (UV) irradiation in the UV-B range has received significant recent interest as a translational inflammatory pain model. Changes in thermal and mechanical sensitivities in the area of primary hyperalgesia are well documented in both the rat and human UV-B models, but the occurrence of secondary mechanical hyperalgesia is controversial. We investigated the occurrence of secondary mechanical hyperalgesia in the rat UV-B model. ⋯ Heat rekindling also induced a significant mechanical hyperalgesia and allodynia on the contralateral hind paw, further suggesting the contribution of central sensitisation. Our data provide strong evidence for a central contribution in both the rat UV-B pain model and an enhanced contribution in the new model combining UV-B irradiation with heat rekindling. We also elucidate potential differences in the methods used by ourselves and others to obtain mechanical withdrawal thresholds in rats, which may explain the lack of secondary hyperalgesia in the rat UV-B model.