Pain
-
Our previous studies show that attention to painful cutaneous laser stimuli is associated with functional connectivity between human primary somatosensory cortex (SI), parasylvian cortex (PS), and medial frontal cortex (MF), which may constitute a pain network. However, the direction of functional connections within this network is unknown. We now test the hypothesis that activity recorded from the SI has a driver role, and a causal influence, with respect to activity recorded from PS and MF during attention to a laser. ⋯ LFP at some electrode sites (critical sites) exerted GRC influences upon signals at multiple widespread electrodes, both in other cortical areas and within the area where the critical site was located. Critical sites may bind these areas together into a pain network, and disruption of that network by stimulation at critical sites might be used to treat pain. Electrical activity recorded from the somatosensory cortex drives activity recorded elsewhere in the pain network and may bind the network together; disruption of that network by stimulation at critical sites might be used to treat pain.
-
Randomized Controlled Trial Clinical Trial
Effect of ketamine on endogenous pain modulation in healthy volunteers.
Inhibitory and facilitatory descending pathways, originating at higher central nervous system sites, modulate activity of dorsal horn nociceptive neurons, and thereby influence pain perception. Dysfunction of inhibitory pain pathways or a shift in the balance between pain facilitation and pain inhibition has been associated with the development of chronic pain. The N-methyl-d-aspartate receptor antagonist ketamine has a prolonged analgesic effect in chronic pain patients. ⋯ These findings suggest that the balance between pain inhibition and pain facilitation was shifted by ketamine towards pain facilitation. The absence of an effect of ketamine on OA indicates differences in the mechanisms and neurotransmitter influences between OA and DNIC. Diffuse noxious inhibitory control responses following a 1-hour low-dose ketamine treatment displayed facilitation of pain in response to experimental noxious thermal stimulation.
-
Quantitative sensory testing (QST) is an instrument to assess positive and negative sensory signs, helping to identify mechanisms underlying pathologic pain conditions. In this study, we evaluated the test-retest reliability (TR-R) and the interobserver reliability (IO-R) of QST in patients with sensory disturbances of different etiologies. In 4 centres, 60 patients (37 male and 23 female, 56.4±1.9years) with lesions or diseases of the somatosensory system were included. ⋯ We conclude that standardized QST performed by trained examiners is a valuable diagnostic instrument with good test-retest and interobserver reliability within 2days. With standardized training, observer bias is much lower than random variance. Quantitative sensory testing performed by trained examiners is a valuable diagnostic instrument with good interobserver and test-retest reliability for use in patients with sensory disturbances of different etiologies to help identify mechanisms of neuropathic and non-neuropathic pain.
-
Nociceptor inputs can trigger a prolonged but reversible increase in the excitability and synaptic efficacy of neurons in central nociceptive pathways, the phenomenon of central sensitization. Central sensitization manifests as pain hypersensitivity, particularly dynamic tactile allodynia, secondary punctate or pressure hyperalgesia, aftersensations, and enhanced temporal summation. It can be readily and rapidly elicited in human volunteers by diverse experimental noxious conditioning stimuli to skin, muscles or viscera, and in addition to producing pain hypersensitivity, results in secondary changes in brain activity that can be detected by electrophysiological or imaging techniques. ⋯ Diagnostic criteria to establish the presence of central sensitization in patients will greatly assist the phenotyping of patients for choosing treatments that produce analgesia by normalizing hyperexcitable central neural activity. We have certainly come a long way since the first discovery of activity-dependent synaptic plasticity in the spinal cord and the revelation that it occurs and produces pain hypersensitivity in patients. Nevertheless, discovering the genetic and environmental contributors to and objective biomarkers of central sensitization will be highly beneficial, as will additional treatment options to prevent or reduce this prevalent and promiscuous form of pain plasticity.
-
In human pain experiments, as well as in clinical settings, subjects are often asked to assess pain using scales (eg, numeric rating scales). Although most subjects have little difficulty in using these tools, some lack the necessary basic cognitive or motor skills (eg, paralyzed patients). Thus, the identification of appropriate nonverbal measures of pain has significant clinical relevance. ⋯ We conclude that at least for male subjects, HR provides a better predictor of pain perception than SC, but that data should be averaged over several stimulus presentations to achieve consistent results. Nevertheless, variability among studies, and the indication that gender of both the subject and experimenter could influence autonomic results, lead us to advise caution in using autonomic or any other surrogate measures to infer pain in individuals who cannot adequately report their perception. Skin conductance is more sensitive to detect within-subject perceptual changes, but heart rate appears to better predict pain ratings at the group level.