Pain
-
Spinal cord injury (SCI) commonly results in the development of neuropathic pain, which can dramatically impair the quality of life for SCI patients. SCI-induced neuropathic pain can be manifested as both tactile allodynia (a painful sensation to a non-noxious stimulus) and hyperalgesia (an enhanced sensation to a painful stimulus). The mechanisms underlying these pain states are poorly understood. ⋯ Furthermore, both intrathecal gabapentin treatment and blocking SCI-induced Ca(v)α2δ-1 protein upregulation by intrathecal Ca(v)α2δ-1 antisense oligodeoxynucleotides could reverse tactile allodynia in SCI rats. These findings support that SCI-induced Ca(v)α2δ-1 upregulation in spinal dorsal horn is a key component in mediating below-level neuropathic pain states, and selectively targeting this pathway may provide effective pain relief for SCI patients. Spinal cord contusion injury caused increased calcium channel Ca(v)α2δ-1 subunit expression in dorsal spinal cord that contributes to neuropathic pain states.
-
This study mapped the fine-scale functional representation of tactile and noxious heat stimuli in cortical areas around the central sulcus of anesthetized squirrel monkeys by using high-resolution blood oxygen level-dependent (BOLD) fMRI at 9.4T. Noxious heat (47.5°C) stimulation of digits evoked multiple spatially distinct and focal BOLD activations. Consistent activations were observed in areas 3a, 3b, 1, and 2, whereas less frequent activation was present in M1. ⋯ Differential BOLD response profiles of the individual cortical areas along the central sulcus suggest that these areas play different roles in the encoding of nociceptive inputs. Thermal nociceptive and tactile inputs may be processed by different clusters of neurons in different areas. To critically bridge animal and human pain studies, human fMRI was related to primate fMRI and electrophysiology of nociceptive processing, examining the functional role of the primary somatosensory cortex in heat nociception and demonstrating that subregion areas 3a, 3b, 1, 2, and M1 are responsive to noxious heat stimuli.