Pain
-
Randomized Controlled Trial
Tropisetron blocks analgesic action of acetaminophen: a human pain model study.
Because the mechanism underlying the analgesic action of acetaminophen remains unclear, we investigated the possible interaction of acetaminophen with central serotonergic pathways. The effects of acetaminophen, tropisetron, the combination of both drugs, and saline on pain perception and central sensitization in healthy volunteers were compared. Sixteen healthy volunteers were included in this randomized, double-blind, placebo-controlled crossover study. ⋯ In summary, while the combination of acetaminophen and tropisetron showed no analgesic action, each drug administered alone led to decreased pain ratings as compared to saline. In an electrically evoked human pain model, the combination of acetaminophen with tropisetron was free of any analgesic potential. However, when administered on its own, both acetaminophen and tropisetron were mildly analgesic.
-
Sensory gain (i.e., hyperalgesia) and sensory loss (ie, hypoalgesia) are key features of neuropathic pain syndromes. Previously, we showed that conditioning electrical stimuli may provoke either sensory gain or decline in healthy subjects, depending on the stimulation frequencies applied. In the present study we sought to determine whether sensory decline induced by 20-Hz electrical stimulation preferentially of peptidergic C-nociceptors induces antihyperalgesic effects in a transdermal electrical pain model. ⋯ We conclude that 20-Hz noxious electrical stimulation may represent a neurostimulatory paradigm with antihyperalgesic properties. These findings may thus be of relevance for the future therapy of neuropathic pain syndromes as well. Sensory decline induced by 20-Hz electrical stimulation of peptidergic C-nociceptors induces antihyperalgesic effects in a transdermal electrical pain model.
-
Recent studies have shown that leptin (an adipocytokine) played an important role in nociceptive behavior induced by nerve injury, but the cellular mechanism of this action remains unclear. Using the whole-cell patch-clamp recording from rat's spinal cord slices, we showed that superfusion of leptin onto spinal cord slices dose-dependently enhanced N-methyl-d-aspartate (NMDA) receptor-mediated currents in spinal cord lamina II neurons. At the cellular level, the effect of leptin on spinal NMDA-induced currents was mediated through the leptin receptor and the JAK2/STAT3 (but not PI3K or MAPK) pathway, as the leptin effect was abolished in leptin receptor-deficient (db/db) mice and inhibited by a JAK/STAT inhibitor. ⋯ Our data demonstrate a relationship between leptin and NMDA receptor-mediated spinal neuronal excitation and its functional role in nociceptive behavior. Since leptin contributes to nociceptive behavior induced by nerve injury, the present findings suggest an important cellular link between the leptin's spinal effect and the NMDA receptor-mediated cellular mechanism of neuropathic pain. A functional link is demonstrated between leptin, an adipocytokine, and the cellular mechanisms of neuropathic pain via enhancement of function and expression of spinal N-methyl-d-aspartate receptors.