Pain
-
Most studies of chronic nerve compression focus on large nerve function in painful conditions, and only few studies have assessed potential changes in the function of small nerve fibers during chronic nerve compression and recovery from compression. Cutaneous pressure-induced vasodilation is a neurovascular phenomenon that relies on small neuropeptidergic fibers controlling the cutaneous microvasculature. We aimed to characterize potential changes in function of these small fibers and/or in cutaneous microvascular function following short-term (1-month) and long-term (6-month) nerve compression and after release of compression (ie, potential recovery of function). ⋯ Pressure-induced vasodilation was impaired following nerve compression and restored following nerve release; both impairment and restoration were strongly related to duration of compression. Small and large nerve fiber functions were less closely related to duration of compression. Our data therefore suggest that cutaneous pressure-induced vasodilation provides a non-invasive and mechanistic test of neurovascular function that gives direct information regarding extent and severity of damage during chronic nerve compression and recovery, and may ultimately provide a clinically useful tool in the evaluation of nerve injury such as carpal tunnel syndrome.
-
Although spinal cord stimulation (SCS) of the dorsal columns is an established method for treating chronic neuropathic pain, patients still suffer from a substantial level of pain. From a clinical perspective it is known that the location of the SCS is of pivotal importance, thereby suggesting a segmental spinal mode of action. However, experimental studies suggest that SCS acts also through the modulation of supraspinal mechanisms, which might suggest that the location is unimportant. ⋯ A repositioning experiment of electrodes from T12 to T13 was performed in 2 animals. Our data demonstrate that SCS of the dorsal columns at the level where the injured fibers enter the spinal cord dorsal horn result in a much better pain-relieving effect than SCS at more rostral levels. From this we conclude that SCS in treatment of neuropathic pain acts through a segmental spinal site of action.
-
C-nociceptors do not normally fire action potentials unless challenged by adequate noxious stimuli. However, in pathological states nociceptors may become hyperexcitable and may generate spontaneous ectopic discharges. The aim of this study was to compare rat neuropathic pain models and to assess their suitability to model the spontaneous C-nociceptor activity found in neuropathic pain patients. ⋯ The three focal traumatic nerve injury models provided the highest proportion (59.5%), whereas the two polyneuropathy models had fewer (18.6%), and the patients had an intermediate proportion (33.3%). Spontaneously active mechano-sensitive C-nociceptors were not recorded. Microneurographic recordings of spontaneous activity in diseased C-nociceptors may be useful for both short- and long-term drug studies, both in animals and in humans.