Pain
-
To identify endogenous factors involved in herpetic pain, we performed genome-wide microarray analysis of the spinal cord of mice that suffered from herpetic allodynia induced by inoculation with herpes simplex virus type 1, which revealed marked induction of galectin-3, a β-galactoside-binding lectin. Therefore, we investigated the role of galectin-3 in herpetic allodynia. The expression levels of galectin-3 mRNA and protein were increased with a temporal pattern similar to that of herpetic allodynia. ⋯ Intrathecal injection of galectin-3 produced mechanical allodynia in naive mice, and intrathecal injections of anti-galectin-3 antibodies significantly reduced herpetic allodynia. The present results suggest that galectin-3 in infiltrating macrophages and/or resident microglia in the spinal dorsal horn contributes to herpetic allodynia. Galectin-3 may be a new therapeutic target for the treatment of herpes zoster-associated pain.
-
Clinical Trial
Compound action potentials recorded in the human spinal cord during neurostimulation for pain relief.
Electrical stimulation of the spinal cord provides effective pain relief to hundreds of thousands of chronic neuropathic pain sufferers. The therapy involves implantation of an electrode array into the epidural space of the subject and then stimulation of the dorsal column with electrical pulses. The stimulation depolarises axons and generates propagating action potentials that interfere with the perception of pain. ⋯ The minimally invasive recording technique we have developed provides data previously obtained only through microelectrode techniques in spinal cords of animals. Our observations also allow the development of systems that use neuronal recording in a feedback loop to control neurostimulation on a continuous basis and deliver more effective pain relief. This is one of numerous benefits that in vivo electrophysiological recording can bring to a broad range of neuromodulation therapies.
-
The fear-avoidance model postulates that in chronic low back pain (CLBP) a fear of movement is acquired in the acute phase, which leads to subsequent avoidance of physical activity and contributes to the pain syndrome's becoming chronic. In the present event-related functional magnetic resonance imaging (fMRI) study of the neural correlates of the fear of movement, 60 women (30 CLBP patients, 15 healthy controls, and 15 women with spider phobia; mean age 46.8±9.8 years) participated. The CLBP patients were divided into a high and low fear-avoidant group on the basis of the Tampa Scale of Kinesiophobia. ⋯ The random-effects analysis showed no differences between high and low fear-avoidant CLBP patients or high fear-avoidant CLBP patients and controls. Normal fear-related activations were present in the high fear-avoidant CLBP patients for the generally fear-inducing pictures, demonstrating the validity of the stimulation paradigm and a generally unimpaired fear processing of the high fear-avoidant CLBP patients. Our findings do not support the fear component of the fear avoidance model.
-
The dose-limiting side effect of taxane, platinum-complex, and other kinds of anticancer drugs is a chronic, distal, bilaterally symmetrical, sensory peripheral neuropathy that is often accompanied by neuropathic pain. Work with animal models of these conditions suggests that the neuropathy is a consequence of toxic effects on mitochondria in primary afferent sensory neurons. If this is true, then additional mitochondrial insult ought to make the neuropathic pain worse. ⋯ Chemotherapy-evoked painful peripheral neuropathy is associated with an abnormal spontaneous discharge in primary afferent A fibers and C fibers. Oligomycin, at the same dose that exacerbated allodynia and hyperalgesia, significantly increased the discharge frequency of spontaneously discharging A fibers and C fibers in both paclitaxel-treated and oxaliplatin-treated rats, but did not evoke any discharge in naïve control rats. These results implicate mitochondrial dysfunction in the production of chemotherapy-evoked neuropathic pain and suggest that drugs that have positive effects on mitochondrial function may be of use in its treatment and prevention.
-
Cancer pain is one of the most severe types of chronic pain, and the most common cancer pain is bone cancer pain. The treatment of bone cancer pain remains a clinical challenge. Here, we report firstly that A-type K(+) channels in dorsal root ganglion (DRG) are involved in the neuropathy of rat bone cancer pain and are a new target for diclofenac, a nonsteroidal anti-inflammatory drug that can be used for therapy for this distinct pain. ⋯ Repeated diclofenac administration decreased soft tissue swelling adjacent to the tumor and attenuated bone destruction. These results indicate that peripheral A-type K(+) channels were involved in the neuropathy of rat bone cancer pain. Targeting A-type K(+) channels in primary sensory neurons may provide a novel mechanism-based therapeutic strategy for bone cancer pain.