Pain
-
Lidocaine is clinically widely used as a local anesthetic inhibiting propagation of action potentials in peripheral nerve fibers. Correspondingly, the functional magnetic resonance imaging (fMRI) response in mouse brain to peripheral noxious input is largely suppressed by local lidocaine administered at doses used in a clinical setting. We observed, however, that local administration of lidocaine at doses 100 × lower than that used clinically led to a significantly increased sensitivity of mice to noxious forepaw stimulation as revealed by fMRI. ⋯ Additional experiments with nociceptor-specific CB(1) receptor knockout mice indicated an involvement of the CB(1) receptors located on the nociceptors. We conclude that low concentrations of lidocaine leads to a sensitization of the nociceptors through a CB(1) receptor-dependent process. This lidocaine-induced sensitization might contribute to postoperative hyperalgesia.
-
Chronic compression (CCD) or dissociation of dorsal root ganglion (DRG) can induce cyclic adenosine monophosphate (cAMP)-dependent DRG neuronal hyperexcitability and behaviorally expressed hyperalgesia. Here, we report that protease-activated receptor 2 (PAR2) activation after CCD or dissociation mediates the increase of cAMP activity and protein kinase A (PKA) and cAMP-dependent hyperexcitability and hyperalgesia in rats. CCD and dissociation, as well as trypsin (a PAR2 activator) treatment, increased level of cAMP concentration, mRNA, and protein expression for PKA subunits PKA-RII and PKA-c and protein expression of PAR2, in addition to producing neuronal hyperexcitability and, in CCD rats, thermal hyperalgesia. ⋯ In addition, trypsin and PAR2 agonistic peptide-induced increase of cAMP was prevented by inhibition of PKC, but not Gαs. These findings suggest that PAR2 activation is critical to induction of nerve injury-induced neuronal hyperexcitability and cAMP-PKA activation. Inhibiting PAR2 activation may be a potential target for preventing/suppressing development of neuropathic pain.
-
The NMDA and TRPV1 receptors that are expressed in sensory neurons have been independently demonstrated to play important roles in peripheral pain mechanisms. In the present study, we investigated whether the 2 receptor-channel systems form a functional complex that provides the basis for the development of mechanical hyperalgesia. In the masseter muscle, direct application of NMDA induced a time-dependent increase in mechanical sensitivity, which was significantly blocked when the muscle was pretreated with a specific TRPV1 antagonist, AMG9810. ⋯ Consistent with the biochemical data, the NMDA-induced mechanical hyperalgesia was also effectively blocked when the muscle was pretreated with a CaMKII or PKC inhibitor. Thus, NMDA receptors and TRPV1 functionally interact via CaMKII and PKC signaling cascades and contribute to mechanical hyperalgesia. These data offer novel mechanisms by which 2 ligand-gated channels in sensory neurons interact and reinforce the notion that TRPV1 functions as a signal integrator under pathological conditions.
-
Opioid analgesia is compromised by intracellular mediators such as protein kinase C (PKC). The phosphatidylinositol hydrolysis-coupled serotonin receptor 5-HT2 is ideally suited to promote PKC activation. We test the hypothesis that 5-HT2A and 5-HT2B receptors, which have been previously shown to become pro-excitatory after spinal nerve ligation (SNL), can negatively influence the ability of opioids to depress spinal excitation evoked by noxious input. ⋯ As assessed from double immunofluorescence labeling for confocal laser scanning microscopy, scarce dorsal horn cell processes showed co-localization color overlay for 5-HT2AR/MOR, 5-HT2BR/MOR, 5-HT2AR/DOR, or 5-HT2BR/DOR in sham-operated rats. Intensity correlation-based analyses showed significant increases in 5-HT2AR/MOR and 5-HT2BR/MOR co-localizations after SNL. These results indicate that plasticity of spinal serotonergic neurotransmission can selectively reduce spinal MOR mechanisms via 5-HT2A and 5-HT2B receptors, including upregulation of the latter and increased expression in dorsal horn neurons containing MOR.
-
Antidepressants that block the reuptake of noradrenaline and/or serotonin are among the first-line treatments for neuropathic pain, although the mechanisms underlying this analgesia remain unclear. The noradrenergic locus coeruleus is an essential element of both the ascending and descending pain modulator systems regulated by these antidepressants. Hence, we investigated the effect of analgesic antidepressants on locus coeruleus activity in Sprague-Dawley rats subjected to chronic constriction injury (CCI), a model of neuropathic pain. ⋯ Moreover, in all animals, these antidepressants reduced the inhibitory period and augmented the late response. We propose that N-methyl-d-aspartate and alpha-2-adrenoceptors are involved in the analgesic effect of antidepressants. Antidepressant-mediated changes were correlated with behavioral effects indicative of analgesia in healthy and neuropathic rats.