Pain
-
Comparative Study
Differentiating between heat pain intensities: the combined effect of multiple autonomic parameters.
Although it is well known that pain induces changes in autonomic parameters, the extent to which these changes correlate with the experience of pain is under debate. The aim of the present study was to compare a combination of multiple autonomic parameters and each parameter alone in their ability to differentiate among 4 categories of pain intensity. Tonic heat stimuli (1minute) were individually adjusted to induce no pain, low, medium, and high pain in 45 healthy volunteers. ⋯ However, none of the parameters differentiated between all 3 pain categories (i.e., low and medium; medium and high; low and high). In contrast, the linear combination of parameters significantly differentiated not only between pain and no pain, but also between all pain categories (P<.001 to .02). These results suggest that multiparameter approaches should be further investigated to make progress toward reliable autonomic-based pain assessment.
-
Although pediatric functional abdominal pain (FAP) has been linked to abdominal pain later in life, childhood predictors of long-term outcomes have not been identified. This study evaluated whether distinct FAP profiles based on patterns of pain and adaptation in childhood could be identified and whether these profiles predicted differences in clinical outcomes and central sensitization (wind-up) on average 9years later. In 843 pediatric FAP patients, cluster analysis was used to identify subgroups at initial FAP evaluation based on profiles of pain severity, gastrointestinal (GI) and non-GI symptoms, pain threat appraisal, pain coping efficacy, catastrophizing, negative affect, and activity impairment. ⋯ Logistic regression analyses controlling for age and sex showed that, compared with pediatric patients with the low pain adaptive profile, those with the high pain dysfunctional profile were significantly more likely at long-term follow-up to meet criteria for pain-related functional gastrointestinal disorder (FGID) (odds ratio: 3.45, confidence interval: 1.95 to 6.11), FGID with comorbid nonabdominal chronic pain (odds ratio: 2.6, confidence interval: 1.45 to 4.66), and FGID with comorbid anxiety or depressive psychiatric disorder (odds ratio: 2.84, confidence interval: 1.35 to 6.00). Pediatric patients with the high pain adaptive profile had baseline pain severity comparable to that of the high pain dysfunctional profile, but had outcomes as favorable as the low pain adaptive profile. In laboratory pain testing at follow-up, high pain dysfunctional patients showed significantly greater thermal wind-up than low pain adaptive patients, suggesting that a subgroup of FAP patients has outcomes consistent with widespread effects of heightened central sensitization.
-
Partial nerve injury leads to peripheral neuropathic pain. This injury results in conducting/uninterrupted (also called uninjured)sensory fibres, conducting through the damaged nerve alongside axotomised/degenerating fibres. In rats seven days after L5 spinal nerve axotomy (SNA) or modified-SNA (added loose-ligation of L4 spinal nerve with neuroinflammation-inducing chromic-gut),we investigated (a) neuropathic pain behaviours and (b) electrophysiological changes in conducting/uninterrupted L4 dorsal root ganglion (DRG) neurons with receptive fields (called: L4-receptive-field-neurons). ⋯ We recorded intracellularly in vivo from normal L4/L5 DRG neurons and ipsilateral L4-receptive-field-neurons. After SNA or modified-SNA, L4-receptive-field-neurons showed the following: (a) increased percentages of C-, Aδ-, and Aβ-nociceptors and cutaneous Aα/β-low-thresholdmechanoreceptors with ongoing/spontaneous firing; (b) spontaneous firing in C-nociceptors that originated peripherally; this was ata faster rate in modified-SNA than SNA; (c) decreased electricalthresholds in A-nociceptors after SNA; (d) hyperpolarised membrane potentials in A-nociceptors and Aα/-low-thresholdmechanoreceptors after SNA, but not C-nociceptors; (e) decreased somatic action potential rise times in C- and A-nociceptors, not Aα/β-low-threshold-mechanoreceptors. We suggest that these changes in subtypes of conducting/uninterrupted neurons after partial nerve injury contribute to the different aspects of neuropathic pain as follows: spontaneous firing in nociceptors to ongoing/spontaneous pain; spontaneous firing in Aα/β-low-threshold-mechanoreceptors to dysesthesias/paresthesias; and lowered A-nociceptor electrical thresholds to A-nociceptor sensitization,and greater evoked pain [corrected].