Pain
-
The National Institutes of Health released the trial registry ClinicalTrials.gov in 2000 to increase public reporting and clinical trial transparency. This systematic review examined whether registered primary outcome specifications (POS; ie, definitions, timing, and analytic plans) in analgesic treatment trials correspond with published POS. Trials with accompanying publications (n = 87) were selected from the Repository of Registered Analgesic Clinical Trials (RReACT) database of all postherpetic neuralgia, diabetic peripheral neuropathy, and fibromyalgia clinical trials registered at ClinicalTrials.gov as of December 1, 2011. ⋯ At best, POS discrepancies may be attributable to insufficient registry requirements, carelessness (eg, failing to report PO assessment timing), or difficulty uploading registry information. At worst, discrepancies could indicate investigator impropriety (eg, registering imprecise PO ["pain"], then publishing whichever pain assessment produced statistically significant results). Improvements in PO registration, as well as journal policies requiring consistency between registered and published PO descriptions, are needed.
-
Neuronal plasticity in the pain-processing pathway is thought to be a mechanism underlying pain hypersensitivity and negative emotions occurring during a pain state. Recent evidence suggests that the activation of astrocytes in the anterior cingulate cortex (ACC) contributes to the development of negative emotions during pain hypersensitivity after peripheral inflammation. However, it is unknown whether these activated astrocytes contribute to neuronal plasticity in the ACC. ⋯ The long-term facilitation in the CFA-injected mice was inhibited by the astroglial toxin, the N-methyl-d-aspartate (NMDA) receptor antagonist and NMDA receptor glycine binding site antagonist. The increase of intracellular Ca(2+) concentration in astrocytes during HFS was higher in the CFA-injected mice than in the control mice and was inhibited by l-α-aminoadipate (l-α-AA). These results suggest that the activation of astrocytes in the ACC plays a crucial role in the development of negative emotions and LTP during pain hypersensitivity after peripheral inflammation.
-
Patients with complex regional pain syndrome (CRPS) frequently show prominent sensory abnormalities in their affected limb, which may extend proximally and even to unaffected body regions. This study examines whether sensory dysfunction is observed in unaffected body parts of CRPS patients, and investigates whether the extent of dysfunction is similar for the various sensory modalities. Quantitative sensory testing was performed in the unaffected extremities and cheeks of 48 patients with CRPS of the arm (31 with dystonia), and the results were compared with values obtained among healthy controls. ⋯ Except for a lower vibration threshold in the contralateral leg of CRPS patients with dystonia, no differences in sensory modalities were found between CRPS patients with and without dystonia. These results point to a general disturbance in central pain processing in patients with CRPS, which may be attributed to impaired endogenous pain control. Since pressure pain is the most deviant sensory abnormality in both unaffected and affected body regions of CRPS patients, this test may serve as an important outcome parameter in future studies and may be used as a tool to monitor the course of the disease.
-
Although feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene-related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) channel. ⋯ This effect of parthenolide abrogates nociceptive responses evoked by stimulation of peripheral trigeminal endings. TRPA1 targeting and neuronal desensitization by parthenolide inhibits CGRP release from trigeminal neurons and CGRP-mediated meningeal vasodilatation, evoked by either TRPA1 agonists or other unspecific stimuli. TRPA1 partial agonism, together with desensitization and nociceptor defunctionalization, ultimately resulting in inhibition of CGRP release within the trigeminovascular system, may contribute to the antimigraine effect of parthenolide.