Pain
-
The enzyme catechol-O-methyltransferase (COMT) metabolizes catecholamine neurotransmitters involved in a number of physiological functions, including pain perception. Both human and mouse COMT genes possess functional polymorphisms contributing to interindividual variability in pain phenotypes such as sensitivity to noxious stimuli, severity of clinical pain, and response to pain treatment. In this study, we found that the effects of Comt functional variation in mice are modality specific. ⋯ The ancestral Comt variant, without a B2 SINE insertion, was more strongly associated with sensitivity to capsaicin in female vs male mice. In humans, the haplotype coding for low COMT activity increased capsaicin-induced pain perception in women, but not men. These findings reemphasize the fundamental contribution of COMT to pain processes, and provide a fine-grained resolution of this contribution at the genetic level that can be used to guide future studies in the area of pain genetics.
-
Central poststroke pain (CPSP) is one of the most refractory chronic pain syndromes. Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex has been demonstrated to provide moderate pain relief for CPSP. However, the mechanism underlying the pain relief remains unclear. ⋯ Intracortical facilitation in the responders was lower than in the controls and the nonresponders at baseline (P=.035 and P=.019), and significantly increased after rTMS (P=.039). There were no significant differences or changes in the other parameters. Our findings suggest that restoration of abnormal cortical excitability might be one of the mechanisms underlying pain relief as a result of rTMS in CPSP.
-
The perception of pain is determined by a combination of genetic, neurobiological, cultural, and emotional factors. Recent studies have demonstrated an association between specific genotypes and pain perception. Particular focus has been given to the triallelic polymorphism in the promoter region of the serotonin transporter gene in relation to pain perception. ⋯ However, in participants with a high expression of the serotonin transporter protein, conditioning with negative pictures increased pain intensity and positive pictures decreased pain intensity when compared with neutral pictures. In contrast, there were no significant effects of the pictures on pain perception in participants with either intermediate or low expression of the protein. These results suggest that polymorphisms in the serotonin transporter gene play an important role in emotions modulation of muscle pain.