Pain
-
Randomized Controlled Trial
A phase III placebo- and oxycodone-controlled study of tanezumab in adults with osteoarthritis pain of the hip or knee.
Tanezumab is a humanized monoclonal antinerve growth factor antibody in development for treatment of chronic pain. In a phase III, placebo- and active-controlled study, we investigated the efficacy and safety of tanezumab for osteoarthritis (OA) hip or knee pain. Patients (N=610) received up to 2 doses of intravenous tanezumab (5 or 10mg in 8-week intervals), controlled-release oral oxycodone (10 to 40 mg every 12 hours), or placebo. ⋯ Adverse event frequency was higher with oxycodone (63.3%) than tanezumab (40.7% to 44.7%) or placebo (35.5%); serious adverse event frequency was similar among treatments. The adverse event profile for tanezumab was similar to previous tanezumab studies. Results indicate that tanezumab is efficacious in the treatment of OA pain; no new safety signals were identified.
-
Histone deacetylase inhibitors (HDACIs) interfere with the epigenetic process of histone acetylation and are known to have analgesic properties in models of chronic inflammatory pain. The aim of this study was to determine whether these compounds could also affect neuropathic pain. Different class I HDACIs were delivered intrathecally into rat spinal cord in models of traumatic nerve injury and antiretroviral drug-induced peripheral neuropathy (stavudine, d4T). ⋯ The drugs globally increased histone acetylation in the spinal cord, but appeared to have no measurable effects in relevant dorsal root ganglia in this treatment paradigm, suggesting that any potential mechanism should be sought in the central nervous system. Microarray analysis of dorsal cord RNA revealed the signature of the specific compound used (MS-275) and suggested that its main effect was mediated through HDAC1. Taken together, these data support a role for histone acetylation in the emergence of neuropathic pain.
-
Fibromyalgia (FM), characterized by chronic widespread pain, is known to be associated with heightened responses to painful stimuli and atypical resting-state functional connectivity among pain-related regions of the brain. Previous studies of FM using resting-state functional magnetic resonance imaging (rs-fMRI) have focused on intrinsic functional connectivity, which maps the spatial distribution of temporal correlations among spontaneous low-frequency fluctuation in functional MRI (fMRI) resting-state data. In the current study, using rs-fMRI data in the frequency domain, we investigated the possible alteration of power spectral density (PSD) of low-frequency fluctuation in brain regions associated with central pain processing in patients with FM. rsfMRI data were obtained from 19 patients with FM and 20 age-matched healthy female control subjects. ⋯ According to the results, patients with FM exhibited significantly increased frequency power in the primary somatosensory cortex (S1), supplementary motor area (SMA), dorsolateral prefrontal cortex, and amygdala. In patients with FM, the increase in PSD did not show an association with depression or anxiety. Therefore, our findings of atypical increased frequency power during the resting state in pain-related brain regions may implicate the enhanced resting-state baseline neural activity in several brain regions associated with pain processing in FM.
-
Neuropathic pain resulting from spinal hemisection or selective spinal nerve ligation is characterized by an increase in membrane-bound tumor necrosis factor-alpha (mTNFα) in spinal microglia without detectable release of soluble TNFα (sTNFα). In tissue culture, we showed that a full-length transmembrane cleavage-resistant TNFα (CRTNFα) construct can act through cell-cell contact to activate neighboring microglia. We undertook the current study to test the hypothesis that mTNFα expressed in microglia might also affect the phenotype of primary sensory afferents, by determining the effect of CRTNFα expressed from COS-7 cells on gene expression in primary dorsal root ganglia (DRG) neurons. ⋯ Exposure to sTNFα produced an increase only in CCL2 expression and release. Treatment of the cells with an siRNA against tumor necrosis factor receptor 2 (TNFR2) significantly reduced CRTNFα-induced gene expression changes in DRG neurons, whereas administration of CCR2 inhibitor had no significant effect on CRTNFα-induced increase in gene expression and CCL2 release in DRG neurons. Taken together, the results of this study suggest that mTNFα expressed in spinal microglia can facilitate pain signaling by up-regulating the expression of cation channels and CCL2 in DRG neurons in a TNFR2-dependent manner.
-
Emerging evidence suggests that perceived injustice is a risk factor for adverse outcomes associated with chronic pain. To date, however, the processes by which perceived injustice impacts on pain outcomes remain speculative. Evidence from several lines of research suggests that anger may mediate the relationship between injustice and pain outcomes. ⋯ Hierarchical regression analyses indicated that anger variables completely mediated the relationship between perceived injustice and pain intensity, and partially mediated the relationship between perceived injustice and depressive symptoms. Anger did not mediate the relationship between perceived injustice and self-reported disability. The Discussion addresses the theoretical and clinical implications of the findings.