Pain
-
Randomized Controlled Trial Multicenter Study
A phase 2, double-blind, randomized, placebo-controlled, dose-escalation study to evaluate the efficacy, safety, and tolerability of naloxegol in patients with opioid-induced constipation.
Naloxegol (previously known as NKTR-118) is a peripherally acting μ-opioid receptor antagonist engineered using polymer conjugate technology in development as an oral, once-daily agent for the treatment of opioid-induced constipation (OIC). Eligible patients with OIC (n=207), defined as <3 spontaneous bowel movements (SBMs) per week with accompanying symptoms, on a stable opioid regimen of 30-1000 mg/day morphine equivalents for ≥ 2 weeks were randomized to receive 4 weeks of double-blind placebo or naloxegol (5, 25, or 50mg) once daily in sequential cohorts after a 1-week placebo run-in. The primary end point, median change from baseline in SBMs per week after week 1 of drug administration, was statistically significant for the 25- and 50-mg naloxegol cohorts vs placebo (2.9 vs 1.0 [P=0.0020] and 3.3 vs 0.5 [P=0.0001], respectively). ⋯ Similar AEs occurred with increased frequency and severity in the 50-mg cohort. There was no evidence of a statistically significant increase from baseline in pain, opioid use for the 25- and 50-mg cohorts, or centrally mediated opioid withdrawal signs and/or symptoms with naloxegol. These data demonstrate that once-daily oral naloxegol improves the frequency of SBMs compared with placebo and is generally well tolerated in this population of patients with OIC.
-
In patients with complex regional pain syndrome (CRPS) type 1, processing of static tactile stimuli is impaired, whereas more complex sensory integration functions appear preserved. This study investigated higher order multisensory integration of body-relevant stimuli using the rubber hand illusion in CRPS patients. Subjective self-reports and skin conductance responses to watching the rubber hand being harmed were compared among CRPS patients (N=24), patients with upper limb pain of other origin (N=21, clinical control group), and healthy subjects (N=24). ⋯ However, patients with CRPS of the right hand reported significantly stronger neglect-like symptoms and significantly lower illusion strength of the affected hand than patients with CRPS of the left hand. The weaker illusion of CRPS patients with strong neglect-like symptoms on the affected hand supports the role of top-down processes modulating body ownership. Moreover, the intact ability to perceive illusory ownership confirms the notion that, despite impaired processing of proprioceptive or tactile input, higher order multisensory integration is unaffected in CRPS.
-
Randomized Controlled Trial
Reactive oxygen species contribute to neuropathic pain and locomotor dysfunction via activation of CamKII in remote segments following spinal cord contusion injury in rats.
In this study, we examined whether blocking spinal cord injury (SCI)-induced increases in reactive oxygen species (ROS) by a ROS scavenger would attenuate below-level central neuropathic pain and promote recovery of locomotion. Rats with T10 SCI developed mechanical allodynia in both hind paws and overproduction of ROS, as assayed by Dhet intensity, in neurons in the lumbar 4/5 dorsal horn ((∗)P<0.05). To scavenge ROS, phenyl-N-tert-butylnitrone (PBN, a ROS scavenger) was administered immediately after SCI and for 7 consecutive days (early treatment) by either intrathecal (it; 1 and 3mg) or systemic (ip; 10, 50 and 100mg) injections. ⋯ Both SCI and t-BOOH treatment groups showed significantly increased phospho-CamKII (pCamKII) expression in neurons and KN-93 (an inhibitor of pCamKII) significantly attenuated mechanical allodynia ((∗)P<0.05). In addition, high doses of PBN significantly promoted the recovery of locomotion ((∗)P<0.05). In conclusion, the present data suggest that overproduction of ROS contribute to sensory and motor abnormalities in remote segments below the lesion after thoracic SCI.
-
Cold allodynia, pain in response to cooling, occurs during or within hours of oxaliplatin infusion and is thought to arise from a direct effect of oxaliplatin on peripheral sensory neurons. To characterize the pathophysiological mechanisms underlying acute oxaliplatin-induced cold allodynia, we established a new intraplantar oxaliplatin mouse model that rapidly developed long-lasting cold allodynia mediated entirely through tetrodotoxin-sensitive Nav pathways. ⋯ Intraplantar injection of the Nav1.6 activator Cn2 elicited spontaneous pain, mechanical allodynia, and enhanced 4-aminopyridine-induced cold allodynia. These findings provide behavioural evidence for a crucial role of Nav1.6 in multiple peripheral pain pathways including cold allodynia.