Pain
-
In complex regional pain syndrome (CRPS)-related dystonia, compelling evidence points to the involvement of the central nervous system, but the underpinning pathobiology is still unclear. Thus, to enable a hypothesis-free, unbiased view of the problem and to obtain new insight into the pathobiology of dystonia in CRPS, we applied an exploratory metabolomics analysis of cerebrospinal fluid (CSF) of patients with CRPS-related dystonia. (1)H-NMR spectroscopy in combination with multivariate modeling were used to investigate metabolic profiles of a total of 105 CSF samples collected from patients with CRPS-related dystonia and controls. We found a significantly different metabolic profile of CSF in CRPS patients compared to controls. ⋯ A supervised analysis generated a strong model pinpointing the most important metabolites contributed to the metabolic signature of patients with CRPS-related dystonia. From the set of identified discriminators, the most relevant metabolites were 2-keto-isovalerate, glucose, glutamine, and lactate, which all showed increased concentrations, and urea, which showed decreased concentration in CRPS subjects. Our findings point at a catabolic state in chronic CRPS patients with dystonia that is likely associated with inflammation.
-
Pain inhibitory mechanisms are often assessed by paradigms of exercise-induced hypoalgesia (EIH) and conditioned pain modulation (CPM). In this study it was hypothesized that the spatial and temporal manifestations of EIH and CPM were comparable. The participants were 80 healthy subjects (40 females), between 18 and 65 years of age in this randomized, repeated-measures cross-over trial that involved data collection on 2 different days. ⋯ High-intensity exercise produced greater EIH responses than did low-intensity exercise. The change in PPTs during cold pressor tests and the change in PPTs after exercises were not correlated. The CPM response was not dominated by local manifestations, and the effect was seen only during the stimulation, whereas exercise had larger local manifestations, and the effects were also found after exercise.
-
We investigated roles for substance P (SP), gastrin-releasing peptide (GRP), and glutamate in the spinal neurotransmission of histamine-dependent and -independent itch. In anesthetized mice, responses of single superficial dorsal horn neurons to intradermal (i.d.) injection of chloroquine were partially reduced by spinal application of the α-amino-3-hydroxy-5-methyl-4-isoxazole proprionate acid (AMPA)/kainate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Co-application of CNQX plus a neurokinin-1 (NK-1) antagonist produced stronger inhibition, while co-application of CNQX, NK-1, and GRP receptor (GRPR) antagonists completely inhibited firing. ⋯ These results indicate that SP, GRP, and glutamate each partially contribute to histamine-independent itch. Histamine-evoked itch is mediated primarily by glutamate, with GRP playing a lesser role. Co-application of NK-1, GRP, and AMPA receptor antagonists may prove beneficial in treating chronic itch.
-
Significant opioid-dependent changes occur during the fourth postnatal week in supraspinal sites (rostroventral medulla [RVM], periaqueductal grey [PAG]) that are involved in the descending control of spinal excitability via the dorsal horn (DH). Here we report developmentally regulated changes in the opioidergic signalling within the PAG and DH, which further increase our understanding of pain processing during early life. Microinjection of the μ-opioid receptor (MOR) agonist DAMGO (30 ng) into the PAG of Sprague-Dawley rats increased spinal excitability and lowered mechanical threshold to noxious stimuli in postnatal day (P)21 rats, but had inhibitory effects in adults and lacked efficacy in P10 pups. ⋯ We found that pro-opiomelanocortin peaked at P21 in the ventral PAG, and MOR increased significantly in the DH as the animals aged. Enkephalin mRNA transcripts preceded the increase in enkephalin immunoreactive fibres in the superficial dorsal horn from P21 onwards. These results illustrate that profound differences in the endogenous opioidergic signalling system occur throughout postnatal development.
-
Pain is both a sensory and an emotional experience, and is subject to modulation by a number of factors including genetic background modulating stress/affect. The Wistar-Kyoto (WKY) rat exhibits a stress-hyper-responsive and depressive-like phenotype and increased sensitivity to noxious stimuli, compared with other rat strains. ⋯ The latter effect is mediated by CB1 receptors in the RVM. Together, these behavioural, neurochemical, and molecular data indicate that impaired endocannabinoid signalling in the RVM underpins hyper-responsivity to noxious stimuli in a genetic background prone to heightened stress/affect.