Pain
-
Injection of hypertonic saline into deep tissues of the back (subcutis, muscle, or the surrounding fascia) can induce acute low back pain (LBP). So far, no study has analyzed differences in temporal, qualitative, and spatial pain characteristics originating from these tissues. The current study aimed to investigate the role of the thoracolumbar fascia as a potential source of LBP. ⋯ Pain radiation and pain affect evoked by fascia injection exceeded those of the muscle (P<0.01) and the subcutis significantly (P<0.05). Pain descriptors after fascia injection (burning, throbbing, and stinging) suggested innervation by both A- and C-fiber nociceptors. These findings show that the thoracolumbar fascia is the deep tissue of the back that is most sensitive to chemical stimulation, making it a prime candidate to contribute to nonspecific LBP but not to localized pressure hyperalgesia.
-
Neuropathic pain (NP) is not easy to understand for those with the diagnosis. Even in specialist medical services, explanation may not be given or may not be integrated with patients' existing beliefs about their conditions. We were curious about how people with NP conceptualised the problem. ⋯ Overall, a biopsychosocial model of pain was only weakly represented, and no integrated model of pain emerged across the four different accounts. There was little reference to NP having been explained when the diagnosis was made. This study highlights the need for more accessible explanations of NP within and outside medical services if people with NP are to use their understanding of NP to help them manage their pain and reduce its impact on their lives.
-
Although nerve injury-induced long-term postsynaptic changes have been investigated, less is known regarding the molecular mechanisms within presynaptic axonal terminals. We investigated the molecular changes in presynaptic nerve terminals underlying chronic pain-induced plastic changes in the medial prefrontal cortex (mPFC). After neuropathic pain was induced by spared nerve injury (SNI) in rats, we assessed the release of the excitatory neurotransmitter glutamate by using in vitro synaptosomal preparations from the mPFC. ⋯ Chronic pain upregulated the phosphorylation of endogenous protein kinases, including extracellular signal-regulated kinases 1 and 2 (ERK1/2) and Ca(2+)/calmodulin-dependent kinase II (CaMKII), and synapsin I, the primary presynaptic target of ERK1/2 and CaMKII. Both presynaptic proteins and protein kinases were upregulated after SNI in a time-dependent manner. These results indicate that the long-term neuropathic pain-induced enhancement of glutamate release in the mPFC is linked to increased synaptic vesicle proteins and the activation of the ERK1/2- and CaMKII-synapsin signaling cascade in presynaptic axonal terminals.
-
The gate theory of pain, published by Ronald Melzack and Patrick Wall in Science in 1965, was formulated to provide a mechanism for coding the nociceptive component of cutaneous sensory input. The theory dealt explicitly with the apparent conflict in the 1960s between the paucity of sensory neurons that responded selectively to intense stimuli and the well-established finding that stimulation of the small fibers in peripheral nerves is required for the stimulus to be described as painful. ⋯ The clarity of the model and its description gave this article immediate visibility, with numerous attempts made to test its various predictions. Although subsequent experiments and clinical findings have made clear that the model is not correct in detail, the general ideas put forth in the article and the experiments they prompted in both animals and patients have transformed our understanding of pain mechanisms.