Pain
-
α2-Adrenoceptors are widely distributed throughout the central nervous system (CNS) and the systemic administration of α2-agonists such as dexmedetomidine produces clinically useful, centrally mediated sedation and analgesia; however, these same actions also limit the utility of these agents (ie, unwanted sedative actions). Despite a wealth of data on cellular and synaptic actions of α2-agonists in vitro, it is not known which neuronal circuits are modulated in vivo to produce the analgesic effect. To address this issue, we made in vivo recordings of membrane currents and synaptic activities in superficial spinal dorsal horn neurons and examined their responses to systemic dexmedetomidine. ⋯ In the brainstem, low doses of systemic dexmedetomidine produced an excitation of locus coeruleus neurons. These results suggest that systemic α2-adrenoceptor stimulation may facilitate inhibitory synaptic responses in the superficial dorsal horn to produce analgesia mediated by activation of the pontospinal noradrenergic inhibitory system. This novel mechanism may provide new targets for intervention, perhaps allowing analgesic actions to be dissociated from excessive sedation.
-
The formalin test still surprises with its biphasic pain-related behavior resulting from a quiescent interphase that does not occur with other algogenic compounds and remains unexplained. The first phase has been attributed to TRPA1-mediated excitation of nociceptors, the second phase to their inflammatory and/or spinal sensitization. We show that the second and interphase require higher formaldehyde concentrations to emerge, and that from 12 mM on calcium influx is induced in TRPA1-deficient sensory neurons as well as in native HEK293T cells. ⋯ The parameters gained were entered into a computational model to predict the activation pattern of primary afferents. The model supports a peripherally generated biphasic response, the time course matching the behavioral results. In conclusion, the interphase is a result of hyperpolarization and transient inactivation by formaldehyde of the surviving neurons; their recovery and the centrifugal spread of formalin in the skin induce a second phase of nociceptive activity before the formalin concentration falls below threshold.