Pain
-
There is increasing evidence relating thalamic changes to the generation and/or maintenance of neuropathic pain. We have recently reported that neuropathic orofacial pain is associated with altered thalamic anatomy, biochemistry, and activity, which may result in disturbed thalamocortical oscillatory circuits. Despite this evidence, it is possible that these thalamic changes are not responsible for the presence of pain per se, but result as a consequence of the injury. ⋯ More specifically, the presence of neuropathic pain after spinal cord injury is associated with significant reductions in thalamic N-acetylaspartate, gamma amino butyric acid content, and blood flow in the region of the thalamic reticular nucleus. Spinal cord injury on its own did not account for these changes. These findings support the hypothesis that neuropathic pain is associated with altered thalamic structure and function, which may disturb central processing and play a key role in the experience of neuropathic pain.
-
Nocebo and placebo effects have been found to modulate several neurochemical systems, such as cholecystokinin, endogenous opioids, and endocannabinoids. Here we show that also the cyclooxygenase-prostaglandins pathway can be modulated by both nocebos and placebos. In fact, we found that negative expectation, the crucial element of the nocebo effect, about headache pain led to the enhancement of the cyclooxygenase-prostaglandins pathway, which, in turn, induced pain worsening. ⋯ We found a significant increase in headache and salivary prostaglandins and thromboxane in the nocebo group compared to the control group, suggesting that negative expectations enhance cyclooxygenase activity. In addition, placebo administration to headache sufferers at high altitude inhibited the nocebo-related component of pain and prostaglandins synthesis, which indicates that the cyclooxygenase pathway can be modulated by both nocebos and placebos. Our results show for the first time how nocebos and placebos affect the synthesis of prostaglandins, which represent an important target of analgesic drugs, thus emphasizing once again the notion that placebos and drugs may use common biochemical pathways.
-
The blood-nerve barrier (BNB) is a selectively permeable barrier that creates an immunologically and biochemically privileged space for peripheral axons and supporting cells. The breakdown of the BNB allows access of blood-borne (hematogenous) cells and molecules to the endoneurium to engage in the local inflammatory cascade. This process was examined in a mouse model of trauma-associated neuropathic pain. ⋯ These results demonstrate that blood-borne molecules may play a role in the generation of neuropathic pain, suggesting that pain may be driven from infection or injury, at a distance from the nervous system. Furthermore, the breakdown of the BNB in neuropathic conditions was exploited to permit the entry of analgesic molecules that typically cannot pass the BNB, such as ProToxin-II, a BNB-impermeable Nav1.7 inhibitor. Therapeutics utilizing this mechanism could have selective access to injured nerves over healthy tissues.
-
Mirror-image pain is characterized by mechanical hypersensitivity on the uninjured mirror-image side. Recent reports favor central mechanisms, but whether peripheral mechanisms are involved remains unclear. We used unilateral spinal nerve ligation (SNL) to induce mirror-image pain in rats. ⋯ In the contralateral DRG, the SNL-evoked tumor necrosis factor alpha (TNF-α) increase, which started later than in the ipsilateral DRG and cerebrospinal fluid, occurred earlier than satellite glial activation and the NGF increase. Intrathecal injection of TNF-α into naive rats not only activated satellite glia to produce extra NGF in the DRG but also evoked mechanical hypersensitivity, which could be attenuated by anti-NGF injection. These results suggest that after SNL, satellite glia in the contralateral DRG are activated by TNF-α that diffuses from the injured side via cerebrospinal fluid, which then activates satellite glia to produce extra NGF to enhance nociceptor excitability, which induces mirror-image pain.