Pain
-
Randomized Controlled Trial
Results from Clinical Trials of a Selective Ionotropic Glutamate Receptor 5 (iGluR5) Antagonist, LY5454694 Tosylate, in 2 Chronic Pain Conditions.
This article reports results of 2 studies investigating LY545694 in pain due to osteoarthritis (OA) of the knee and diabetic peripheral neuropathic pain (DPNP). Study I randomized patients to either of 2 doses of LY545694 or to placebo, and study II randomized patients to either of 3 doses of LY545694, to pregabalin, or to placebo. No significant differences between LY545694 groups and placebo were observed on the primary (average pain severity) or secondary efficacy measures in either study. ⋯ Without an active control, it is unknown whether the OA study was negative or failed. Consequently, efficacy of selective ionotropic glutamate receptor antagonism in chronic pain conditions may warrant further investigation. Future trials should consider different pain conditions, contain a positive control with larger patient numbers per arm, and be conducted within a single region.
-
Randomized Controlled Trial
Partial reinforcement, extinction, and placebo analgesia.
Numerous studies indicate that placebo analgesia can be established via conditioning procedures. However, these studies have exclusively involved conditioning under continuous reinforcement. Thus, it is currently unknown whether placebo analgesia can be established under partial reinforcement and how durable any such effect would be. ⋯ However, although the placebo analgesia established under CRF extinguished during test phase, the placebo analgesia established under PRF did not. These findings indicate that PRF can induce placebo analgesia and that these effects are more resistant to extinction than those established via CRF. PRF may therefore reflect a novel way of enhancing clinical outcomes via the placebo effect.
-
The primary brain dysfunctions leading to the onset of a migraine attack remain largely unknown. Other important open questions concern the mechanisms of initiation, continuation, and termination of migraine pain, and the changes in brain function underlying migraine transformation. Brief trains of high-frequency repetitive transcranial magnetic stimulation (rTMS), when applied to the primary motor cortex at suprathreshold intensity (⩾120% of resting motor threshold [RMT]), elicit in healthy subjects a progressive, glutamate-dependent facilitation of the motor evoked potentials (MEP). ⋯ Results showed a facilitatory MEP response during the trains in patients evaluated in the preictal phase, whereas inhibitory responses were observed during and after a migraine attack, as well as in CM patients. In the interictal phase, different responses were observed, depending on attack frequency: facilitation in patients with low and inhibition in those with high attack recurrence. Our findings suggest that changes in cortical excitability and fluctuations in the threshold for inhibitory metaplasticity underlie the migraine attack recurrence, and could be involved in the process of migraine transformation.
-
PI3-kinases (PI3Ks) participate in nociception within spinal cord, dorsal root ganglion (DRG), and peripheral nerves. To extend our knowledge, we immunohistochemically stained for each of the 4 class I PI3K isoforms along with several cell-specific markers within the lumbar spinal cord, DRG, and sciatic nerve of naive rats. Intrathecal and intraplantar isoform specific antagonists were given as pretreatments before intraplantar carrageenan; pain behavior was then assessed over time. ⋯ Intraplantar administration of the γ-antagonist prominently reduced pain behavior. These data suggest that each isoform displays specificity with regard to neuronal type as well as to specific tissues. Furthermore, each PI3K isoform has a unique role in development of nociception and tissue inflammation.
-
Endothelin (ET-1), an endogenous peptide with a prominent role in cutaneous pain, causes mechanical hypersensitivity in the rat hind paw, partly through mechanisms involving local release of algogenic molecules in the skin. The present study investigated involvement of cutaneous ATP, which contributes to pain in numerous animal models. Pre-exposure of ND7/104 immortalized sensory neurons to ET-1 (30nM) for 10min increased the proportion of cells responding to ATP (2μM) with an increase in intracellular calcium, an effect prevented by the ETA receptor-selective antagonist BQ-123. ⋯ ET-1-sensitized calcium responses to ATP were strongly inhibited by broad-spectrum (TNP-ATP) and P2X4-selective (5-BDBD) antagonists, but not antagonists for other P2X subtypes. TNP-ATP and 5-BDBD also significantly inhibited ET-1-induced mechanical sensitization in the rat hind paw, supporting a role for purinergic receptor sensitization in vivo. These data provide evidence that mechanical hypersensitivity caused by cutaneous ET-1 involves an increase in the neuronal sensitivity to ATP in the skin, possibly due to sensitization of P2X4 receptors.