Pain
-
Animal studies have suggested that the cerebellum, in addition to its motor functions, also has a role in pain processing and modulation, possibly because of its extensive connections with the prefrontal cortex and with brainstem regions involved in descending pain control. Consistently, human imaging studies have shown cerebellar activation in response to painful stimulation. However, it is presently not clear whether cerebellar lesions affect pain perception in humans. ⋯ In contrast, heat and pressure pain thresholds were not significantly different between groups. These results show that, after cerebellar infarction, patients perceive heat and repeated mechanical stimuli as more painful than do healthy control subjects and have deficient activation of endogenous pain inhibitory mechanisms (offset and placebo analgesia). This suggests that the cerebellum has a previously underestimated role in human pain perception and modulation.
-
Decreased activity of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, contributes to pain in humans and animals. Previously, we demonstrated that development of COMT-dependent pain is mediated by both β2- and β3-adrenergic receptors (β2ARs and β3ARs). Here we investigated molecules downstream of β2- and β3ARs driving pain in animals with decreased COMT activity. ⋯ Finally, we found that NO influences TNFα, IL-1β, IL-6, and CCL2 levels, whereas TNFα and IL-6 influence NO levels. Altogether, these results demonstrate that β2- and β3ARs contribute to COMT-dependent pain, at least partly, by increasing NO and cytokines. Furthermore, they identify β2- and β3ARs, NO, and proinflammatory cytokines as potential therapeutic targets for pain patients with abnormalities in COMT physiology.
-
Interleukin-17 (IL-17) is involved in a wide range of inflammatory disorders and in recruitment of inflammatory cells to injury sites. A recent study of IL-17 knock-out mice revealed that IL-17 contributes to neuroinflammation and neuropathic pain after peripheral nerve injury. Surprisingly, little is known of micro-environment modulation by IL-17 in injured sites and in pathologically related neuroinflammation and chronic neuropathic pain. ⋯ In conclusion, we provided evidence that IL-17 modulates the micro-environment at the level of the peripheral injured nerve site and regulates progression of behavioral hypersensitivity in a murine chronic neuropathic pain model. The attenuated behavioral hypersensitivity in IL-17(-/-) mice could be a result of decreased inflammatory cell infiltration to the injured site, resulting in modulation of the pro- and anti-inflammatory cytokine milieu within the injured nerve. Therefore, IL-17 may be a critical component for neuropathic pain pathogenesis and a novel target for therapeutic intervention for this and other chronic pain states.
-
Empathy for the pain experience of others can lead to the activation of pain-related brain areas and can even induce aberrant responses to pain in human observers. Recent evidence shows this high-level emotional and cognitive process also exists in lower animals; however, the mechanisms underlying this phenomenon remain unknown. In the present study we found that, after social interaction with a rat that had received subcutaneous injection of bee venom (BV), only the cagemate observer (CO) but not the noncagemate observer (NCO) showed bilateral mechanical hypersensitivity and an enhanced paw flinch reflex following BV injection. ⋯ Anxiety can also be excluded because anxiety-like behaviors could be seen in both the CO and NCO rats tested in the open-field test. Finally, bilateral lesions of the medial prefrontal cortex eliminated the enhancement of the BV-induced paw flinch reflex in CO rats, but bilateral lesions of either the amygdala or the entorhinal cortex failed. Together, we have provided another line of evidence for the existence of familiarity-dependent empathy for pain in rats and have demonstrated that the medial prefrontal cortex plays a critical role in processing the empathy-related enhancement of spinal nociception.