Pain
-
Burning mouth syndrome is characterized by altered sensory qualities, namely tongue pain hypersensitivity. We found that the mRNA expression of Artemin (Artn) in the tongue mucosa of patients with burning mouth syndrome was significantly higher than that of control subjects, and we developed a mouse model of burning mouth syndrome by application of 2,4,6-trinitrobenzene sulfonic acid (TNBS) diluted with 50% ethanol to the dorsum of the tongue. TNBS treatment to the tongue induced persistent, week-long, noninflammatory tongue pain and a significant increase in Artn expression in the tongue mucosa and marked tongue heat hyperalgesia. ⋯ The capsaicin-induced current in TG neurons innervating the tongue was enhanced following TNBS treatment and was inhibited by local administration of neutralizing anti-Artn antibody to the tongue. These results suggest that the overexpression of Artn in the TNBS-treated tongue increases the membrane excitability of TG neurons innervating the tongue by increasing TRPV1 sensitivity, which causes heat hyperalgesia. This model may be useful for the study of tongue pain hypersensitivity associated with burning mouth syndrome.
-
Synaptic inhibition plays a key role in processing somatosensory information. Blocking inhibition at the spinal level is sufficient to produce mechanical allodynia, and many neuropathic pain conditions are associated with reduced inhibition. Disinhibition of spinal neurons can arise through decreased GABAA/glycine receptor activation or through dysregulation of intracellular chloride. ⋯ As pathological downregulation of KCC2 is triggered by brain-derived neurotrophic factor, we also confirmed that ACTZ was effective against brain-derived neurotrophic factor-induced hyperresponsiveness. Our results argue that intrathecal ACTZ has antiallodynic effects only if allodynia arises through chloride dysregulation; therefore, behavioral evidence that ACTZ is antiallodynic in nerve-injured animals affirms the contribution of chloride dysregulation as a key pathological mechanism. Although different disinhibitory mechanisms are not mutually exclusive, these results demonstrate that their relative contribution dictates which specific therapies will be effective.