Pain
-
Patients with neuropathic pain commonly present with spontaneous pain, in addition to allodynia and hyperalgesia. Although evoked responses in neuropathic pain models are well characterized, determining the presence of spontaneous pain is more challenging. We determined whether the chronic constriction injury (CCI) model could be used to measure effects of treatment of spontaneous pain, by evaluating dorsal horn neuron (DHN) spontaneous activity and spontaneous pain-related behaviors. ⋯ The median rate of spontaneous activity in the CCI group (12.6 impulses per second) was not different from the sham group (9.2 impulses per second). Also, there was no change in DHN spontaneous activity after sciatic nerve block with bupivacaine. Our findings suggest that CCI as a neuropathic pain model should not be used to measure effects of treatment of spontaneous pain driven by the peripheral input.
-
Treating neuropathic pain continues to be a major clinical challenge and underlying mechanisms of neuropathic pain remain elusive. We have recently demonstrated that Wnt signaling, which is important in developmental processes of the nervous systems, plays critical roles in the development of neuropathic pain through the β-catenin-dependent pathway in the spinal cord and the β-catenin-independent pathway in primary sensory neurons after nerve injury. Here, we report that Wnt signaling may contribute to neuropathic pain through the atypical Wnt/Ryk signaling pathway in rats. ⋯ Spinal blocking of the Wnt/Ryk receptor signaling inhibits the induction and persistence of neuropathic pain without affecting normal pain sensitivity and locomotor activity. Blocking activation of the Ryk receptor with anti-Ryk antibody, in vivo or in vitro, greatly suppresses nerve injury-induced increased intracellular Ca and hyperexcitability of the sensory neurons, and also the enhanced plasticity of synapses between afferent C-fibers and the dorsal horn neurons, and activation of the NR2B receptor and the subsequent Ca-dependent signals CaMKII, Src, ERK, PKCγ, and CREB in sensory neurons and the spinal cord. These findings indicate a critical mechanism underlying the pathogenesis of neuropathic pain and suggest that targeting the Wnt/Ryk signaling may be an effective approach for treating neuropathic pain.
-
Histamine plays a complex role in pain modulation with opposite roles in nociception for histamine receptor subtypes 1, 2, and 3. The histamine H4 receptor (H4R) is expressed primarily on cells involved in inflammation and immune responses with a proinflammatory activity, but little is known about the role in nociception of neuronal H4R. To investigate the effects of neuronal H4R in pain transmission, the effects produced by the H4R agonist ST-1006 were detected in the spared nerve injury model of neuropathic pain. ⋯ Double immunofluorescence experiments showed a neuronal localization and site of action for H4R. These findings suggest a prevalent modulation of ERK activity after H4R stimulation and indicate the DRG as prominent site of action for H4R-mediated antineuropathic activity. Targeting neuronal H4R with selective agonists could have therapeutic potential for neuropathic pain treatment.
-
Individuals with chronic pain show greater vulnerability to depression or anger than those without chronic pain, and also show greater interpersonal difficulties and physical disability. The present study examined data from 675 individuals with chronic pain during their initial visits to a tertiary care pain clinic using assessments from Stanford University's Collaborative Health Outcomes Information Registry (CHOIR). Using a path modeling analysis, the mediating roles of Patient-Reported Outcomes Measurement Information Systems (PROMIS) Physical Function and PROMIS Satisfaction with Social Roles and Activities were tested between pain intensity and PROMIS Depression and Anger. ⋯ Our results suggest that the process by which chronic pain disrupts emotional well-being involves both physical function and disrupted social functioning. However, the more salient factor in determining pain-related emotional distress seems to be disruption of social relationships, than global physical impairment. These results highlight the particular importance of social factors to pain-related distress, and highlight social functioning as an important target for clinical intervention in chronic pain.