Pain
-
Opioid use in chronic pain treatment is complex, as patients may derive both benefit and harm. Identification of individuals currently using opioids in a problematic way is important given the substantial recent increases in prescription rates and consequent increases in morbidity and mortality. The present review provides updated and expanded information regarding rates of problematic opioid use in chronic pain. ⋯ Abuse was reported in only a single study. Only 1 difference emerged when study methods were examined, where rates of addiction were lower in studies that identified prevalence assessment as a primary, rather than secondary, objective. Although significant variability remains in this literature, this review provides guidance regarding possible average rates of opioid misuse and addiction and also highlights areas in need of further clarification.
-
Existing analgesics are not efficacious in treating all patients with chronic pain and have harmful side effects when used long term. A deeper understanding of pain signaling and sensitization could lead to the development of more efficacious analgesics. Nociceptor sensitization occurs under conditions of inflammation and nerve injury where diverse chemicals are released and signal through receptors to reduce the activation threshold of ion channels, leading to an overall increase in neuronal excitability. ⋯ Thus, PIP2 sits at a critical convergence point for multiple receptors, ion channels, and signaling pathways that promote and maintain chronic pain. Decreasing the amount of PIP2 in neurons was recently shown to attenuate pronociceptive signaling and could provide a novel approach for treating pain. Here, we review the lipid kinases that are known to regulate pain signaling and sensitization and speculate on which additional lipid kinases might regulate signaling in nociceptive neurons.
-
Development and application of psychophysical test paradigms to assess endogenous pain modulation in healthy controls and in patients yielded large body of data over the last 2 decades. These tests can assist in predicting pain acquisition, in characterizing pain syndromes and related dysfunctions of pain modulation, and in predicting response to treatment. This chapter reviews the development of thought on pain modulation in the clinical setup, focusing on conditioned pain modulation, and update on accumulated data regarding the mechanism, protocols of administration, and applications in the clinic.
-
Pain is a biologically relevant signal and response to bodily threat, associated with the urge to restore the integrity of the body. Immediate protective responses include increased arousal, selective attention, escape, and facial expressions, followed by recuperative avoidance and safety-seeking behaviors. To facilitate early and effective protection against future bodily threat or injury, learning takes place rapidly. ⋯ In contrast to the rapid acquisition of learned responses, their extinction is slow, fragile, context dependent and only occurs through inhibitory processes. Here, we review features of associative forms of learning in humans that contribute to pain, pain-related distress, and disability and discuss promising future directions. Although conditioning has a long and honorable history, a conditioning perspective still might open new windows on novel treatment modalities that facilitate the well-being of individuals with chronic pain.
-
Cancer pain sends a message. It is frightening to the patient. It heralds progression or recurrence to the oncologist. ⋯ In this manner, these nerves serve as bellwethers and sensors embedded within the cancer. When we rigorously assess patients' cancer pain, we gain insight into the action of cancer. An enhanced understanding of cancer pain offers biological questions that if answered might not only provide relief from cancer pain but might also improve survival.