Pain
-
Randomized Controlled Trial
Evidence for a central mode of action for etoricoxib (COX-2 Inhibitor) in patients with painful knee osteoarthritis.
The COX-2 inhibitor etoricoxib modulates the peripheral and central nociceptive mechanisms in animals. This interaction has not been studied in patients with pain. This randomized, double-blind, placebo-controlled, 2-way crossover, 4-week treatment study investigated the pain mechanisms modulated by etoricoxib in patients with painful knee osteoarthritis. ⋯ Generally, a responder to etoricoxib has the most facilitated TS. In conclusion, etoricoxib (1) modulated central pain modulatory mechanisms and (2) improved pain and function in painful osteoarthritis. Stronger facilitation of TS may indicate a better response to etoricoxib, supporting the central mode-of-action of the drug.
-
The redefinition of neuropathic pain as "pain arising as a direct consequence of a lesion or disease affecting the somatosensory system," which was suggested by the International Association for the Study of Pain (IASP) Special Interest Group on Neuropathic Pain (NeuPSIG) in 2008, has been widely accepted. In contrast, the proposed grading system of possible, probable, and definite neuropathic pain from 2008 has been used to a lesser extent. Here, we report a citation analysis of the original NeuPSIG grading paper of 2008, followed by an analysis of its use by an expert panel and recommendations for an improved grading system. ⋯ Obstacles to a wider use of the grading system were identified, including (1) questions about the relative significance of confirmatory tests, (2) the role of screening tools, and (3) uncertainties about what is considered a neuroanatomically plausible pain distribution. Here, we present a revised grading system with an adjusted order, better reflecting clinical practice, improvements in the specifications, and a word of caution that even the "definite" level of neuropathic pain does not always indicate causality. In addition, we add a table illustrating the area of pain and sensory abnormalities in common neuropathic pain conditions and propose areas for further research.
-
Placebos are often used by clinicians, usually deceptively and with little rationale or evidence of benefit, making their use ethically problematic. In contrast with their typical current use, a provocative line of research suggests that placebos can be intentionally exploited to extend analgesic therapeutic effects. Is it possible to extend the effects of drug treatments by interspersing placebos? We reviewed a database of placebo studies, searching for studies that indicate that placebos given after repeated administration of active treatments acquire medication-like effects. ⋯ Third, using placebos along with active medication, for part of the course of treatment, should limit dose escalation and lower costs. Provided that nondisclosure is preauthorized in the informed consent process and that robust evidence indicates therapeutic benefit comparable to that of standard full-dose therapeutic regimens, introducing dose-extending placebos into the clinical arsenal should be considered. This novel prospect of placebo use has the potential to change our general thinking about painkiller treatments, the typical regimens of painkiller applications, and the ways in which treatments are evaluated.
-
Randomized Controlled Trial
The effect of local versus remote experimental pain on motor learning and sensorimotor integration using a complex typing task.
Recent work demonstrated that capsaicin-induced acute pain improved motor learning performance; however, baseline accuracy was very high, making it impossible to discern the impact of acute pain on motor learning and retention. In addition, the effects of the spatial location of capsaicin application were not explored. Two experiments were conducted to determine the interactive effects of acute pain vs control (experiment 1) and local vs remote acute pain (experiment 2) on motor learning and sensorimotor processing. ⋯ Experiment 2: The P25 SEP peak decreased in the local group after application of capsaicin cream (P < 0.01), whereas the N30 SEP peaks increased after motor learning in both groups (P < 0.05). Accuracy improved in the local group at retention (P < 0.005), and response time improved after motor learning (P < 0.005) and at retention (P < 0.001). This study suggests that acute pain may increase focal attention to the body part used in motor learning, contributing to our understanding of how the location of pain impacts somatosensory processing and the associated motor learning.
-
The treatment of neuropathic pain remains a clinical challenge because of its unclear mechanisms and broad clinical morbidity. Matrix metalloproteinase (MMP)-9 and MMP-2 have previously been described as key components in neuropathic pain because of their facilitation of inflammatory cytokine maturation and induction of neural inflammation. Therefore, the inhibition of MMPs may represent a novel therapeutic approach to the treatment of neuropathic pain. ⋯ The administration of NAC blocked the maturation of interleukin-1β, which is a critical substrate of MMPs, and markedly suppressed the neuronal activation induced by CCI, including inhibiting the phosphorylation of protein kinase Cγ, NMDAR1, and mitogen-activated protein kinases. Finally, NAC significantly inhibited CCI-induced microglia activation but elicited no notable effects on astrocytes. These results demonstrate an effective and safe approach that has been used clinically to alleviate neuropathic pain through the powerful inhibition of the activation of MMPs.