Pain
-
Tactile allodynia, a condition in which innocuous mechanical stimuli are perceived as painful, is a common feature of chronic pain. However, how the brain reorganizes in relation to the emergence of tactile allodynia is still largely unknown. This may stem from the fact that experiments in humans are cross-sectional in nature, whereas animal brain imaging studies typically require anaesthesia rendering the brain incapable of consciously sensing or responding to pain. ⋯ In contrast, nucleus accumbens and prefrontal brain areas displayed abnormal activity to normally innocuous stimuli when such stimuli induced tactile allodynia at 28 days after peripheral nerve injury, which had not been the case at 5 days after injury. Our data indicate that tactile allodynia-related nociceptive inputs are not observable in the primary somatosensory cortex BOLD response. Instead, our data suggest that, in time, tactile allodynia differentially engages neural circuits that regulate the affective and motivational components of pain.
-
The superficial dorsal horn, which is the main target for nociceptive and pruritoceptive primary afferents, contains a high density of excitatory interneurons. Our understanding of their roles in somatosensory processing has been restricted by the difficulty of distinguishing functional populations among these cells. We recently defined 3 nonoverlapping populations among the excitatory neurons, based on the expression of neurotensin, neurokinin B, and gastrin-releasing peptide. ⋯ We show that many of these cells respond to noxious thermal and mechanical stimuli and to intradermal injection of pruritogens. Finally, we demonstrate that these cells can also be identified in a knock-in Cre mouse line (Tac1), although our findings suggest that there is an additional population of neurons that transiently express PPTA. This population of substance P-expressing excitatory neurons is likely to play an important role in the transmission of signals that are perceived as pain and itch.