Pain
-
Air pollution is linked to increased emergency department visits for headache and migraine patients frequently cite chemicals or odors as headache triggers, but the association between air pollutants and headache is not well understood. We previously reported that chronic environmental irritant exposure sensitizes the trigeminovascular system response to nasal administration of environmental irritants. Here, we examine whether chronic environmental irritant exposure induces migraine behavioral phenotypes. ⋯ Sumatriptan, an acute migraine treatment blocked acute blood flow changes in response to TRPA1 or transient receptor potential vanilloid receptor-1 agonists. Pretreatment with valproic acid, a prophylactic migraine treatment, attenuated the enhanced blood flow responses observed after acrolein inhalation exposures. Environmental irritant exposure yields an animal model of chronic migraine in which to study mechanisms for enhanced headache susceptibility after chemical exposure.
-
Research shows that chronic pain is related to cortical alterations that can be reflected in reduced tactile acuity, but whether acute pain perception influences tactile acuity has not been tested. Considering the biological role of nociception, it was hypothesized that nociceptive pain will lead to a rapid improvement in tactile acuity and that this effect is correlated with pain intensity and pain distribution. In this randomised double-blind controlled experiment (trial no. ⋯ Other tests, point-to-point test and two-point estimation task, changed with a similar trend but did not reach significance. We concluded that acute, nociceptive pain does not improve but deteriorates tactile acuity linearly. The biological role of the observed phenomenon is unknown, and therefore, future studies should address this question.
-
Nerve growth factor (NGF) injected into the human skin causes local hyperalgesia to mechanical and electrical stimuli lasting for weeks. Pig data suggested axonal sensitization of C-nociceptors as a contributing mechanism. Here, we recorded single C-nociceptors in 11 human subjects 3 weeks after intracutaneous injection of 1 μg NGF into the foot dorsum. ⋯ The sensitization included sensory and axonal components affecting both activation thresholds and supra-threshold responses. Our data suggest that a combination of sensory sensitization and axonal hyperexcitability is underlying the localized hyperalgesia by facilitating action potential generation and conduction. Axonal changes were also found in the asymptomatic skin surrounding the NGF-treatment sites, thereby possibly reflecting "nociceptive priming."
-
Peripheral nerve injury (PNI) activates the immune system, resulting in increased proinflammatory cytokines at the site of injury and in the spinal cord dorsal horn. Exercise modulates the immune system promoting an anti-inflammatory phenotype of macrophages in uninjured muscle, and increases in anti-inflammatory cytokines can promote healing and analgesia. We proposed that PNI will decrease, and treadmill exercise will increase, release of anti-inflammatory cytokines at the site of injury and in the spinal cord. ⋯ The increased M2 and decreased M1 macrophages in exercised mice did not occur in IL-4 mice. In the spinal cord, PNI increased glial cell activation, brain-derived neurotrophic factor and β-nerve growth factor levels, and decreased IL-4 and IL-1ra levels, whereas treadmill exercise suppressed glial cells activation (Glial Fibrillary Acidic Protein and Iba1 immunoreactivity), reduced brain-derived neurotrophic factor and β-nerve growth factor, and increased IL-4, IL-1ra, and IL-5 concentrations. Our results suggest that IL-4 mediates the analgesia produced by low-intensity exercise by modulating peripheral and central neuroimmune responses in mice with neuropathic pain.
-
With less than 50% of patients responding to the current standard of care and poor efficacy and selectivity of current treatments, neuropathic pain continues to be an area of considerable unmet medical need. Biological therapeutics such as monoclonal antibodies (mAbs) provide better intrinsic selectivity; however, delivery to the central nervous system (CNS) remains a challenge. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is well described in inflammation-induced pain, and early-phase clinical trials evaluating its antagonism have exemplified its importance as a peripheral pain target. ⋯ Functional analysis of glial cells revealed that pretreatment with GM-CSF potentiated lipopolysaccharide-induced release of proinflammatory cytokines. In summary, our data indicate that GM-CSF is a proinflammatory cytokine that contributes to nociceptive signalling through driving spinal glial cell secretion of proinflammatory mediators. In addition, we report a successful approach to accessing CNS pain targets, providing promise for central compartment delivery of analgesics.