Pain
-
Studies using rodent models of neuropathic pain use sham surgery control procedures that cause deep tissue damage. Sham surgeries would thus be expected to induce potentially long-lasting postsurgical pain, but little evidence for such pain has been reported. Operant tests of voluntary behavior can reveal negative motivational and cognitive aspects of pain that may provide sensitive tools for detecting pain-related alterations. ⋯ Rats receiving standard sham surgeries demonstrated enhanced pain-like avoidance behavior compared with naive controls, and this behavior was similar to that of corresponding chronic constriction injury or spinal cord injury rats weeks or months after injury. In the case of sham surgery for spinal cord injury, video analysis of voluntary exploratory behavior directed at the probes revealed enhanced forepaw withdrawal responses. These findings have important implications for preclinical investigations into behavioral alterations and physiological mechanisms associated with postsurgical and neuropathic pain.
-
This study aimed to investigate whether the differences in pain perception between patients with borderline personality disorder (BPD) and healthy subjects (HCs) can be explained by differences in the glutamate/GABA ratio in the posterior insula. In total, 29 BPD patients and 31 HCs were included in the statistical analysis. Mechanical pain sensitivity was experimentally assessed with pinprick stimuli between 32 and 512 mN on a numeric rating scale. ⋯ In the BPD patient group, the correlations between the glutamate/GABA ratio and the pain intensity ratings to 256- and 512-mN pinpricks did not reach significance. In conclusion, the study showed that individual differences in pain perception may in part be explained by the individual glutamate/GABA ratio in the posterior insula. However, this possible mechanism does not explain the differences in pain perception between BPD patients and HCs.
-
Nociceptive trigeminal afferents innervating craniofacial area, eg, facial skin and cranial meninges, project to a broad region in the medullary and upper cervical dorsal horn designated as the trigeminocervical complex. Lamina I neurons in the trigeminocervical complex integrate and relay peripheral inputs, thus playing a key role in both cranial nociception and primary headache syndromes. Because of the technically challenging nature of recording, the long-range trigeminal afferent inputs to the medullary and cervical lamina I neurons were not intensively studied so far. ⋯ This pattern of supply was consistent with our labelling experiments showing extensive cervical projections of trigeminal afferents. Excitatory inputs were mediated, although not exclusively, through AMPA/kainate and NMDA receptors, whereas inhibitory inputs through both GABA and glycine receptors. In conclusion, the trigeminocervical lamina I neurons receive a complex pattern of long-range monosynaptic and polysynaptic inputs from a variety of the trigeminal nociceptive afferents.
-
Randomized Controlled Trial
A randomised, double blind, placebo-controlled crossover trial of the influence of the HCN channel blocker ivabradine in a healthy volunteer pain model: an enriched population trial.
Preclinical studies suggest that type 2 hyperpolarization-activated cyclic nucleotide gated ion channels (HCN2) are necessary for neuropathic pain. This trial assessed the influence of ivabradine, a nonselective HCN channel blocker, on capsaicin-induced hyperalgesia and pain in healthy human subjects. An enriched population comprising subjects who developed >20 cm of punctate hyperalgesia from topical capsaicin (0.5% cream applied onto 9 cm area) was identified. ⋯ However, ivabradine caused a slowing of heart rate (difference of 10.10 beats per minute [95% confidence interval -6.48 to -13.73; P-value <0.0001]). We conclude that ivabradine lacks analgesic effects in the capsaicin pain model at a dose that caused appreciable slowing of heart rate and, hence, is unlikely to prove a useful analgesic in humans. More selective drugs are required to establish a role of HCN2 for pain in humans.