Pain
-
Neuropathic pain genesis is related to gene alterations in the dorsal root ganglion (DRG) after peripheral nerve injury. Transcription factors control gene expression. In this study, we investigated whether octamer transcription factor 1 (OCT1), a transcription factor, contributed to neuropathic pain caused by chronic constriction injury (CCI) of the sciatic nerve. ⋯ Mechanistically, OCT1 participated in CCI-induced increases in Dnmt3a mRNA and its protein and DNMT3a-mediated decreases in Oprm1 and Kcna2 mRNAs and their proteins in the injured DRG. These findings indicate that OCT1 may participate in neuropathic pain at least in part by transcriptionally activating Dnmt3a and subsequently epigenetic silencing of Oprm1 and Kcan2 in the DRG. OCT1 may serve as a potential target for therapeutic treatments against neuropathic pain.
-
Neuropathic pain represents a challenge to clinicians because it is resistant to commonly prescribed analgesics due to its largely unknown mechanisms. Here, we investigated a descending dopaminergic pathway-mediated modulation of trigeminal neuropathic pain. We performed chronic constriction injury of the infraorbital nerve from the maxillary branch of trigeminal nerve to induce trigeminal neuropathic pain in mice. ⋯ Specific excitation of dopaminergic neurons in the A11 nucleus attenuated the trigeminal neuropathic pain through the activation of D2 receptors in the spinal trigeminal nucleus caudalis. Conversely, specific ablation of the A11 dopaminergic neurons exacerbated such pain. Our results suggest that the descending A11-spinal trigeminal nucleus caudalis dopaminergic projection is critical for the modulation of trigeminal neuropathic pain and could be manipulated to treat such pain.