Pain
-
Painful peripheral neuropathy is a dose-limiting side effect of cisplatin treatment. Using a murine model of cisplatin-induced hyperalgesia, we determined whether a PPARγ synthetic agonist, pioglitazone, attenuated the development of neuropathic pain and identified underlying mechanisms. Cisplatin produced mechanical and cold hyperalgesia and decreased electrical thresholds of Aδ and C fibers, which were attenuated by coadministration of pioglitazone (10 mg/kg, intraperitoneally [i.p.]) with cisplatin. ⋯ Oxidative stress in DRG neurons was considered a significant contributor to cisplatin-evoked hyperalgesia because a ROS scavenger attenuated hyperalgesia and normalized the evoked calcium responses when cotreated with cisplatin. Pioglitazone increased the expression and activity of ROS-reducing enzymes in DRG and normalized cisplatin-evoked changes in oxidative stress and labeling of mitochondria with the dye MitoTracker Deep Red, indicating that the antihyperalgesic effects of pioglitazone were attributed to its antioxidant properties in DRG neurons. These data demonstrate clear benefits of broadening the use of the antidiabetic drug pioglitazone, or other PPARγ agonists, to minimize the development of cisplatin-induced painful neuropathy.
-
Facial expressions of pain are not undefined grimaces, but they convey specific information about the internal state of the individual in pain. With this systematic review, we aim to answer the question of which facial movements are displayed most consistently during pain. We searched for studies that used the Facial Action Coding System to analyze facial activity during pain in adults, and that report on distinct facial responses (action units [AUs]). ⋯ This subset was found independently of the cognitive status of the individuals and was stable across clinical and experimental pain with only one variation, namely that eye closure (AU43) occurred more frequently during clinical pain. This subset of pain-related facial responses seems to encode the essential information about pain available in the face. However, given that these pain-related AUs are most often not displayed all at once, but are differently combined, health care professionals should use a more individualized approach, determining which pain-related facial responses an individual combines and aggregates to express pain, instead of erroneously searching for a uniform expression of pain.
-
Painful and disabling musculoskeletal disorders remain prevalent. In rats trained to perform repetitive tasks leading to signs and dysfunction similar to those in humans, we tested whether manual therapy would prevent the development of the pathologies and symptoms. We collected behavioral, electrophysiological, and histological data from control rats, rats that trained for 5 weeks before performing a high-repetition high-force (HRHF) task for 3 weeks untreated, and trained rats that performed the task for 3 weeks while being treated 3x/week using modeled manual therapy (MMT) to the forearm (HRHF + MMT). ⋯ Neurons from HRHF rats had a heightened proportion of ongoing activity and altered conduction velocities compared with control and MMT-treated rats. Median nerve branches in HRHF rats contained increased numbers of CD68 macrophages and degraded myelin basic protein, and showed increased extraneural collagen deposition, compared with the other groups. We conclude that the performance of the task for 3 weeks leads to increased ongoing activity in nociceptors, in parallel with behavioral and histological signs of neuritis and nerve injury, and that these pathophysiologies are largely prevented by MMT.
-
Our recent work has shown that the early-life administration of vincristine (VNC), commonly used to treat pediatric cancers, evokes mechanical pain hypersensitivity in rats that emerges during adolescence and persists into adulthood. However, the underlying mechanisms remain unclear, as nothing is known about how neonatal VNC treatment influences peripheral and central nociceptive processing at the cellular level. Here, we used in vitro intracellular microelectrode and whole-cell patch-clamp recordings to evaluate the consequences of early-life VNC administration on the intrinsic membrane properties of adolescent dorsal root ganglion and spinal superficial dorsal horn neurons. ⋯ Meanwhile, putative interneurons within lamina I exhibited a reduction in repetitive action potential discharge after early-life chemotherapy. Collectively, these findings suggest that neonatal VNC treatment evokes cell type-specific changes in intrinsic excitability at multiple levels of the ascending pain pathway. Overall, this work lays an essential foundation for the future exploration of the ionic mechanisms that drive chemotherapy-induced chronic pain in children and adolescents.