Pain
-
The role of sex hormones on postsurgical pain perception is basically unclear. Here, we studied the role of endogenous gonadal hormones for pain and hyperalgesia in human volunteers after experimental incision. A 4-mm incision was made in the volar forearm of 15 female volunteers both in the follicular and the luteal phase (random block design). ⋯ Likewise, incision-induced pain and pinprick hyperalgesia (rating and area) were significantly predicted by progesterone (partial r = 0.70, r = 0.46, and r = 0.47, respectively; P < 0.05-0.0001) and in part by FSH; the contribution of estrogen, however, was fully occluded by progesterone for all measures. In conclusion, pinprick pain and incision-induced pain and mechanical hyperalgesia were greater in the luteal phase and predicted by progesterone, suggesting a major role for progesterone. Other hormones involved are testosterone (protective) and in part FSH.
-
Data from preclinical research have been suggested to suffer from a lack of inherent reproducibility across laboratories. The goal of our study was to replicate findings from a previous report that demonstrated positive effects of Meteorin, a novel neurotrophic factor, in a rat model of neuropathic pain induced by chronic constriction injury (CCI). Notably, 5 to 6 intermittent subcutaneous (s.c.) injections of Meteorin had been reported to produce reversal of mechanical allodynia/thermal hyperalgesia after injury, wherein maximum efficacy of Meteorin was reached slowly and outlasted the elimination of the compound from the blood by several weeks. ⋯ Systemic administration of recombinant mouse Meteorin (0.5 and 1.8 mg/kg, s.c.) at days 10, 12, 14, 17, and 19 after CCI produced a prolonged reversal of neuropathic hypersensitivity with efficacy comparable with that obtained with gabapentin (100 mg/kg, orally). Despite some protocol deviations (eg, nociceptive endpoint, animal vendor, testing laboratory, investigator, etc.) being incurred, these did not affect study outcome. By paying careful attention to key facets of study design, using bioactive material, and confirming drug exposure, the current data have replicated the salient findings of the previous study, promoting confidence in further advancement of this novel molecule as a potential therapy for neuropathic pain.
-
Chronic muscle pain is a prominent symptom of the hand-arm vibration syndrome (HAVS), an occupational disease induced by exposure to vibrating power tools, but the underlying mechanism remains unknown. We evaluated the hypothesis that vibration induces an interleukin 6 (IL-6)-mediated downregulation of the potassium voltage-gated channel subfamily A member 4 (KV1.4) in nociceptors leading to muscle pain. Adult male rats were submitted to a protocol of mechanical vibration of the right hind limb. ⋯ Finally, knockdown of the IL-6 receptor signaling subunit glycoprotein 130 (gp130) attenuated both vibration-induced muscle hyperalgesia and downregulation of KV1.4. These results support the hypothesis that IL-6 plays a central role in the induction of muscle pain in HAVS. This likely occurs through intracellular signaling downstream to the IL-6 receptor subunit gp130, which decreases the expression of KV1.4 in nociceptors.
-
Peripheral inflammation produces a long-lasting latent sensitization of spinal nociceptive neurons, that is, masked by tonic inhibitory controls. We explored mechanisms of latent sensitization with an established four-step approach: (1) induction of inflammation; (2) allow pain hypersensitivity to resolve; (3) interrogate latent sensitization with a channel blocker, mutant mouse, or receptor antagonist; and (4) disrupt compensatory inhibition with a receptor antagonist so as to reinstate pain hypersensitivity. We found that the neuropeptide Y Y1 receptor antagonist BIBO3304 reinstated pain hypersensitivity, indicative of an unmasking of latent sensitization. ⋯ We conclude that PKA and Epac are sufficient to maintain long-lasting latent sensitization of dorsal horn neurons that is kept in remission by the NPY-Y1 receptor system. Furthermore, we have identified and characterized 2 novel molecular signaling pathways in the dorsal horn that drive latent sensitization in the setting of chronic inflammatory pain: NMDAR→AC1→PKA→TRPA1/V1 and NMDAR→AC1→Epac1/2. New treatments for chronic inflammatory pain might either increase endogenous NPY analgesia or inhibit AC1, PKA, or Epac.
-
Pain is the leading cause of disability in the developed world but remains a poorly treated condition. Specifically, postsurgical pain continues to be a frequent and undermanaged condition. Here, we investigate the analgesic potential of pharmacological NaV1.7 inhibition in a mouse model of acute postsurgical pain, based on incision of the plantar skin and underlying muscle of the hind paw. ⋯ In addition, we found superadditive antinociceptive effects of subtherapeutic Pn3a doses not only with the opioid oxycodone but also with the GABAB receptor agonist baclofen. Transcriptomic analysis of gene expression changes in dorsal root ganglia of mice after surgery did not reveal any changes in mRNA expression of endogenous opioids or opioid receptors; however, several genes involved in pain, including Runx1 (Runt related transcription factor 1), Cacna1a (CaV2.1), and Cacna1b (CaV2.2), were downregulated. In summary, these findings suggest that pain after surgery can be successfully treated with NaV1.7 inhibitors alone or in combination with baclofen or opioids, which may present a novel and safe treatment strategy for this frequent and poorly managed condition.