Pain
-
Central neuropathic pain (CNP) after spinal cord injury (SCI) is debilitating and immensely impacts the individual. Central neuropathic pain is relatively resistant to treatment administered after it develops, perhaps owing to irreversible pathological processes. Although preemptive treatment may overcome this shortcoming, its administration necessitates screening patients with clinically relevant biomarkers that could predict CNP early post-SCI. ⋯ Allodynia and at-level CPM predicted CNP severity at 3 to 4 and 24 months, respectively. Reduced pain inhibition capacity precedes, and may lead to CNP. At-level pain adaptation is an early CNP biomarker with which individuals at risk can be identified to initiate preemptive treatment.
-
Most studies of diabetic polyneuropathy (DPN) and painful DPN are conducted in persons with longstanding diabetes. This cross-sectional study aimed to estimate the prevalence of DPN and painful DPN, important risk factors, and the association with mental health in recently diagnosed type 2 diabetes. A total of 5514 (82%) patients (median diabetes duration 4.6 years) enrolled in the Danish Centre for Strategic Research in Type 2 Diabetes cohort responded to a detailed questionnaire on neuropathy and pain. ⋯ Possible DPN and painful DPN were independently and additively associated with lower quality of life, poorer sleep, and symptoms of depression and anxiety. Possible DPN itself had greater impact on mental health than neuropathic pain. This large study emphasizes the importance of careful screening for DPN and pain early in the course of type 2 diabetes.
-
Preventing and treating opioid dependence and withdrawal is a major clinical challenge, and the underlying mechanisms of opioid dependence and withdrawal remain elusive. We hypothesized that prolonged morphine exposure or chronic inflammation-induced μ-opioid receptor activity serves as a severe stress that elicits neuronal alterations and recapitulates events during development. Here, we report that Wnt signaling, which is important in developmental processes of the nervous system, plays a critical role in withdrawal symptoms from opioid receptor activation in mice. ⋯ In the DH, Wnt5b, acts through the atypical Wnt-Ryk receptor and alternative Wnt-YAP/TAZ signaling pathways, contributing to the naloxone-precipitated opioid withdrawal-like behavioral symptoms and hyperalgesia. Inhibition of Wnt synthesis and blockage of Wnt signaling pathways greatly suppress the behavioral and neurochemical alterations after naloxone-precipitated withdrawal. These findings reveal a critical mechanism underlying naloxone-precipitated opioid withdrawal, suggesting that targeting Wnt5b synthesis in DRG neurons and Wnt signaling in DH may be an effective approach for prevention and treatment of opioid withdrawal syndromes, as well as the transition from acute to chronic pain.