Pain
-
Human NaV1.9 (hNaV1.9), encoded by SCN11A, is preferentially expressed in nociceptors, and its mutations have been linked to pain disorders. NaV1.9 could be a promising drug target for pain relief. However, the modulation of NaV1.9 activity has remained elusive. ⋯ Moreover, overexpression of PRMT7 increased the number of action potential fired in DRG neurons of Scn11a+/+ mice but not Scn11a-/- mice. However, DS-437 significantly inhibited the action potential frequency of DRG neurons and relieved pain hypersensitivity in Scn11aA796G/A796G mice. In summary, our observations revealed that PRMT7 modulates neuronal excitability by regulating NaV1.9 currents, which may provide a potential method for pain treatment.
-
There is a need to better understand biological factors that increase the risk of persistent musculoskeletal (MSK) pain and heightened pain sensitivity. Knowing the heritability (how genes account for differences in people's traits) can enhance the understanding of genetic vs environmental influences of pain and pain sensitivity. However, there are gaps in current knowledge, including the need for intergenerational studies to broaden our understanding of the genetic basis of pain. ⋯ By contrast, heritability of cold pain sensitivity was not significant. This is the largest intergenerational study to date to comprehensively investigate the heritability of both MSK pain and pain sensitivity, using robust statistical analysis. This study provides support for the heritability of MSK pain and pain sensitivity to pressure, suggesting the need for further convergence of genetic and environmental factors in models for the development or maintenance of these pain disorders.