Pain
-
Observing someone experience pain relief or exacerbation after an intervention may induce placebo hypoalgesia or nocebo hyperalgesia. Understanding the factors that contribute to these effects could help in the development of strategies for optimizing treatment of chronic pain conditions. We systematically reviewed and meta-analyzed the literature on placebo hypoalgesia and nocebo hyperalgesia induced by observational learning (OL). ⋯ Overall, the meta-analysis demonstrates that OL can shape placebo hypoalgesia and nocebo hyperalgesia. More research is needed to identify predictors of these effects and to study them in clinical populations. In the future, OL could be an important tool to help maximize placebo hypoalgesia in clinical settings.
-
We investigated the efficacy of inhibiting persistent Na + currents (I NaP ) in acute rodent models of migraine with aura. Cortical spreading depression (SD) is a slow wave of neuronal and glial depolarization that underlies the migraine aura. Minimally invasive optogenetic SD (opto-SD) causes periorbital mechanical allodynia in mice, suggesting SD activates trigeminal nociceptors. ⋯ GS-458967 also diminished early and late phase formalin-induced paw-licking behavior with early phase paw licking responding to lower doses. GS-458967 up to 3 mg/kg had no impact on locomotor activity. These data provide evidence that I NaP inhibition can reduce opto-SD-induced trigeminal pain behavior and support I NaP inhibition as an antinociceptive strategy for both abortive and preventive treatment of migraine.
-
Although founded on the basis of the study of pain, the International Association for the Study of Pain (IASP) has actively advocated for improving pain relief and access to pain management in a variety of ways. The Global Year was launched in 2004 and has continued with a different theme each year, and "Pain Awareness Month" is held every September. ⋯ The work of IASP on the 11th version of the International Classification of Disease has ensured that chronic pain is recognized as a disease in its own right, and the establishment of the Global Alliance of Partners for Pain Advocacy Task Force recognizes the importance of engaging people with lived experience of pain in accomplishing IASP's mission. The Working Group on Global Advocacy now spearheads IASP's global efforts in capacity building to ensure that pain advocacy activities will continue to grow.
-
Parkinson disease (PD) affects up to 2% of the general population older than 65 years and is a major cause of functional loss. Chronic pain is a common nonmotor symptom that affects up to 80% of patients with (Pw) PD both in prodromal phases and during the subsequent stages of the disease, negatively affecting patient's quality of life and function. Pain in PwPD is rather heterogeneous and may occur because of different mechanisms. ⋯ This is also in line with the International Classification of Disease-11 , which acknowledges the possibility of chronic secondary musculoskeletal or nociceptive pain due to disease of the CNS. In this narrative review and opinion article, a group of basic and clinical scientists revise the mechanism of pain in PD and the challenges faced when classifying it as a stepping stone to discuss an integrative view of the current classification approaches and how clinical practice can be influenced by them. Knowledge gaps to be tackled by coming classification and therapeutic efforts are presented, as well as a potential framework to address them in a patient-oriented manner.
-
The mechanisms of pain in postherpetic neuralgia (PHN) are still unclear, with some studies showing loss of cutaneous sensory nerve fibers that seemed to correlate with pain level. We report results of skin biopsies and correlations with baseline pain scores, mechanical hyperalgesia, and the Neuropathic Pain Symptom Inventory (NPSI) in 294 patients who participated in a clinical trial of TV-45070, a topical semiselective sodium 1.7 channel (Nav1.7) blocker. Intraepidermal nerve fibers and subepidermal Nav1.7 immunolabeled fibers were quantified in skin punch biopsies from the area of maximal PHN pain, as well as from the contralateral, homologous (mirror image) region. ⋯ Using cluster analysis, 2 groups could be identified, with the first cluster showing higher baseline pain, higher NPSI scores for squeezing and cold-induced pain, higher nerve fiber density, and higher Nav1.7 expression. While Nav1.7 varies from patient to patient, it does not seem to be a key pathophysiological driver of PHN pain. Individual differences in Nav1.7 expression, however, may determine the intensity and sensory aspects of pain.