Pain
-
Physiological or pathology-mediated changes in neuronal activity trigger structural plasticity of the action potential generation site-the axon initial segment (AIS). These changes affect intrinsic neuronal excitability, thus tuning neuronal and overall network output. Using behavioral, immunohistochemical, electrophysiological, and computational approaches, we characterized inflammation-related AIS plasticity in rat's superficial (lamina II) spinal cord dorsal horn (SDH) neurons and established how AIS plasticity regulates the activity of SDH neurons, thus contributing to pain hypersensitivity. ⋯ We show that AIS shift back close to the soma, and SDH inhibitory neurons' excitability increases to baseline levels following recovery from inflammatory hyperalgesia. The computational model of SDH inhibitory neurons predicts that the distal shift of AIS is sufficient to decrease the intrinsic excitability of these neurons. Our results provide evidence of inflammatory pain-mediated AIS plasticity in the central nervous system, which differentially affects the excitability of inhibitory SDH neurons and contributes to inflammatory hyperalgesia.
-
Although pain dysfunction is increasingly observed in Huntington disease, the underlying mechanisms still unknown. As a crucial Huntington-associated protein, Huntington-associated protein 1 (HAP1) is enriched in normal spinal dorsal horn and dorsal root ganglia (DRG) which are regarded as "primary sensory center," indicating its potential functions in pain process. Here, we discovered that HAP1 level was greatly increased in the dorsal horn and DRG under acute and chronic pain conditions. ⋯ Furthermore, SNI-induced activation of astrocytes and microglia notably decreased in HAP1-deficient mice. These results indicate that HAP1 deficiency might attenuate pain responses. Collectively, our results suggest that HAP1 in dorsal horn and DRG neurons regulates Cav1.2 surface expression, which in turn reduces neuronal excitability, BDNF secretion, and inflammatory responses and ultimately influences neuropathic pain progression.
-
Central sensitization (CS) is defined as an increased nociceptive responsiveness due to sensitization of neurons in the central nervous system, usually the result of prolonged nociceptive input or a disease state associated with noxious inputs (eg, polyarthritis). The concept of CS has recently been adopted in clinical assessments of chronic pain, but its diagnosis in humans may now include a wide range of hypervigilant responses. The purpose of this review is to ascertain whether self-report questionnaires linked with CS are associated with enhanced nociceptive responses or whether they measure sensitivity in a broader sense (ie, emotional responses). ⋯ The PSQ did, however, correlate strongly with phasic heat and tonic cold pain tests. The studies reviewed did not provide sufficient evidence that self-report measures reflect a canonical understanding of CS. The CSI more closely reflects psychological hypervigilance than increased responsiveness of nociceptive neurons.
-
Observational Study
Cannabis use disorder in chronic pain patients: over- and underestimation in a cross-sectional observational study in three German pain management centres.
There are concerns that cannabis use disorder (CUD) may develop in patients with chronic pain prescribed medical cannabis (MC). The criteria for CUD according to the Statistical Manual for Mental Disorders Version 5 (DSM-5) were not developed for the identification of patients using cannabis for therapeutic reasons. In addition, some items of CUD might be attributed to the desire of the patient to relieve the pain. ⋯ Urine tests were positive for nonprescribed drugs (amphetamines and tranquilizer) in 4.8% of subjects. Physicians identified abuse in 1 patient. In this study, the DSM-5 criteria overestimated and physicians underestimated the prevalence of CUD in patients prescribed MC for chronic pain.