Pain
-
Nociceptor cell bodies generate "spontaneous" discharge that can promote ongoing pain in persistent pain conditions. Little is known about the underlying mechanisms. Recordings from nociceptor cell bodies (somata) dissociated from rodent and human dorsal root ganglia have shown that previous pain in vivo is associated with low-frequency discharge controlled by irregular depolarizing spontaneous fluctuations of membrane potential (DSFs), likely produced by transient inward currents across the somal input resistance. ⋯ Partial reduction of the amplitude or frequency of DSFs by perfusion of pharmacological inhibitors indicated small but significant contributions from Nav1.7, Nav1.8, TRPV1, TRPA1, TRPM4, and N-type Ca 2+ channels. Less specific blockers suggested a contribution from NALCN channels, and global knockout suggested a role for Nav1.9. The combination of high somal input resistance plus background activity of diverse ion channels permeable to Na + or Ca 2+ produces DSFs that are poised to reach AP threshold if resting membrane potential depolarizes, AP threshold decreases, or DSFs become enhanced-all of which can occur under painful neuropathic and inflammatory conditions.