Pain
-
One-fifth of US adults experience chronic pain, which is associated with increased tobacco and cannabis use. Although bidirectional relationships between tobacco and pain have been demonstrated, pathways between pain, cannabis use, and co-use of cannabis and tobacco are understudied. We aimed to estimate the effects of (1) substance use (exclusive and co-use of cannabis and tobacco) on later pain intensity, and (2) pain intensity on later substance use. ⋯ Compared with no cannabis/tobacco use at T1, co-use (OR: 2.29 [95% CI: 2.09-2.51]), exclusive tobacco use (2.00 [1.86-2.14]), and exclusive cannabis use (1.35 [1.13-1.61]) were all associated with moderate/severe pain at T2. Moderate/severe pain at T1 increased odds of co-use (2.43 [2.22-2.66]), exclusive tobacco (2.12 [1.98-2.28]), and exclusive cannabis use (1.46 [1.29-1.65]) compared with no cannabis/tobacco use at T2, and increased odds of co-use at T2 compared with exclusive cannabis/tobacco use. Findings demonstrated bidirectional relationships between pain and the exclusive use and co-use of cannabis and tobacco and indicate potential synergy in the co-use of cannabis and tobacco with respect to pain.
-
This study set out to investigate in a population-based longitudinal cohort, whether chronification of back pain (BP) is related to structural gray matter changes in corticolimbic brain structures. Gray matter volume (GMV) was measured in participants with chronic BP (CBP, n = 168) and controls without chronic pain (n = 323) at 2 time points with an interval of 7 years (baseline t1, follow-up t2). Over this time period, participants with CBP showed an increase of GMV in the left ventral striatum, whereas controls showed a decrease. ⋯ Those with emerging CBP had less GMV in the right entorhinal area, right amygdala, and left medial frontal cortex. Additional variables differing between those who had BP at t1 and later developed CBP or not were pain intensity, body mass index, and depression score. In sum, these findings are in accordance with the notion that limbic brain properties are both predisposing risk factors and drivers of brain reorganization during the development of CBP.
-
Although the behavioral response to pain is complex and involves supraspinal processes, assessment of pain symptoms in animal models still mainly relies on reflex-based nociceptive tests, which do not account for the affective-motivational nor cognitive components of pain. We introduce a double avoidance place preference paradigm, an integrated testing procedure in freely moving rats that relies on the conflict between the avoidance of a dark compartment in which a thermal ramp is activated, and the escape towards an aversive brightly lit compartment. We were able to differentiate the first nociceptive threshold from the temperature of definitive escape from the dark compartment, conveying information on the adaptive behavior of animals. ⋯ In animals exhibiting hyperalgesia following intraplantar complete Freund adjuvant injection, escape thresholds were significantly higher than that of control animals, hinting at a maladaptive affective-motivational response to noxious stimulation. However, in cuff animals, we failed to reveal any hot nociceptive hypersensitivity, but animals exhibited a strong adaptive response to cold simulation upon reexposure. Overall, the proposed paradigm allows for an integrated cortical response leading to a proactive avoidance behavior, while fully complying with ethical standards in animal experimentation.
-
Spinal cord stimulation (SCS) is an effective modality for pain treatment, yet its underlying mechanisms remain elusive. Neurokinin 1 receptor-positive (NK1R+) neurons in spinal lamina I play a pivotal role in pain transmission. To enhance our mechanistic understanding of SCS-induced analgesia, we investigated how different SCS paradigms modulate the activation of NK1R+ neurons, by developing NK1R-Cre;GCaMP6s transgenic mice and using in vivo calcium imaging of superficial NK1R+ neurons under anesthesia (1.5% isoflurane). ⋯ However, at low intensity (20% MoT), the 30-minute 900-Hz SCS only induced persistent neuronal inhibition in naïve mice, but not in SNI-t mice. In conclusion, both 10-minute high-intensity SCS and 30-minute SCS at moderate intensity inhibit the activation of superficial NK1R+ neurons, potentially attenuating spinal nociceptive transmission. Furthermore, in vivo calcium imaging of NK1R+ neurons provides a new approach for exploring the spinal neuronal mechanisms of pain inhibition by neuromodulation pain therapies.
-
Translational models of the sensitized pain system are needed to progress the understanding of involved mechanisms. In this study, long-term potentiation was used to develop a mechanism-based large-animal pain model. Event-related potentials to electrical stimulation of the ulnar nerve were recorded by intracranial recordings in pigs, 3 weeks before, immediately before and after, and 3 weeks after peripheral high-frequency stimulation (HFS) applied to the ulnar nerve in the right forelimb (7 pigs) or in control animals (5 pigs). ⋯ The relative increase in N1 30 minutes after HFS and the degree of mechanical hyperalgesia 2 weeks post-HFS was correlated (P < 0.033). These results show for the first time that the pig HFS model resembles the human HFS model closely where the profile of sensitization is comparable. Interestingly, the degree of sensitization was associated with the cortical signs of hyperexcitability at HFS induction.